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Abstract— This paper presents a comparative performance
evaluation of three different teleoperation interfaces for very
low weight (<3 kg) anthropomorphic dual arms intended to
conduct complex manipulation tasks involving a certain level
of dexterity, accuracy and agility, either in ground service
or in aerial manipulation applications. A visual human pose
estimation system is developed to obtain the Cartesian and joint
values of the user, which are mapped to the corresponding pose
of the dual arm manipulator exploiting the equivalent human-
robot kinematics. A leader-follower scheme is also presented,
using a reduced scale dual arm that can replicate directly the
joint positions of the leader arms to the follower arms. A 6-
DOF (degrees of freedom) joystick is proposed to generate
linear motions more accurately. A total of 60 ground tests
were conducted involving 10 participants to determine the
accuracy and time performance in two benchmarks (box edges
and S contour tracking). Finally, the visual and leader-follower
interfaces were evaluated with the dual arm aerial manipulator
on flight tests, reporting several findings derived from the
system evaluation.

Index Terms— teleoperation interfaces; human pose estima-
tion; anthropomorphic robotic arms;

I. INTRODUCTION

It is desirable and expected that dexterous manipulation
robots are capable to conduct complex manipulation tasks in
diverse application domains such as inspection and mainte-
nance, assembly and manufacturing, logistics, or health care
and home service, either in ground [1], aerial [2] or space
[3] environments. However, despite the significant advances
in robot autonomy and manipulation performance, humans
are still considered nowadays as the best general purpose
manipulator due to the high level of integrated cognition,
sensing, perception, and dexterous manipulation skills. In
this sense, the adoption of anthropomorphic robotic arms
contributes to facilitate the transferability of skills from
humans to robots [4], resulting in more natural and intuitive
interactions for non expert users intended to use this kind
of robots in different tasks. Not only that, but human-like
and human-size robotic arms can also benefit from the vast
examples of manipulation tasks contained in online videos
and learn by themselves to conduct certain operations [5].

In a more practical sense, and focusing on human-like
robotic arms, there are three main reasons for exploring and
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Fig. 1: Experimental setup for evaluating teleoperation inter-
faces 6-DOF Joystick (6DOFJ), Leader-Follower Arms In-
terface (LFAI), and Visual Human Pose Estimation (VHPE)
(left). Torso of the operator during bird diverter setup pro-
cedure (upper right). Aerial manipulator replicating human
operator movement (bottom right).

evaluating the possibilities of teleoperation interfaces. First,
in some application domains, such as in space [6] or aerial [7]
robotic manipulation, it is not possible, feasible or safe for a
human operator to conduct a task in the workspace. Second,
when the operation cannot be conducted autonomously by
the robot due to its complexity, expert human workers can
be introduced for replicating the operations or for providing
the robot some sample trajectories that serve as reference
for further improvement with some machine learning scheme
[8]. Third, given the significant differences between human
users, it is convenient to experimentally evaluate different
interfaces to determine the suitability to different tasks [9].

Although the literature in teleoperation systems for robotic
arms is quite extended, most implementations rely on rela-
tively heavy manipulators (the so called "lightweight" in-
dustrial manipulator KUKA LBR iiwa weights 24 kg). In
order to extend the adoption of dexterous robotic arms in
a wider range of applications out of research laboratories,
it is necessary to overcome two practical isues: cost and
weight. This has motivated the development of lightweight
and compliant anthropomorphic dual arm systems (LiCAS),
derived from the aerial robotic manipulation field [10], [11],
and whose features in terms of very low weight (<3 kg) and
mechanical joint compliance result particularly suitable for
other ground service operations involving the manipulation
of light loads (<1 kg weight). The application of dexterous
aerial manipulators in complex and challenging maintenance
operations like installation of bird flight diverters in power
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lines [12] is a representative example where intuitive and
easily deployable teleoperation interfaces are required [13].

The main contribution of this paper is the development and
comparative evaluation of three different teleoperation inter-
faces for fast deployment, natural and intuitive replication of
human movements using very low weight (<3 kg) anthropo-
morphic dual arm systems capable of conducting dexterous
manipulation tasks in ground or while flying when integrated
in multi-rotors, as depicted in Fig. 1. These interfaces are
Visual Human Pose Estimation (VHPE), Leader-Follower
Arms Interface (LFAI), and 6-DOF Joystick (6DOFJ). Ra-
tionale for choosing each of the interfaces is following:
6DOFJ is affordable computer peripheral, mainly used in 3D
modelling which can be reprogrammed to provide control
inputs to the robot arms, therefore, availability, affordability
and simplicity are main factors for choosing such interface.
LFAI provides easy and intuitive way for the end users
to control anthropomorphic arms with the clear idea how
should commanded arms configuration look alike. VHPE
is choosen because we believe that with easy to deploy
interface, humans with little or no training - can use their
arms to intuitively command anthropomorphic robot arms.
Each of the interfaces is evaluated in two trajectory tracking
benchmarks (box and S contours) to compare the accuracy,
time performance, and users performance according to the
NASA Task Load Index (TLX) indicators [14]. The VHPE
and LFAI are evaluated with a dual arm aerial manipulation
robot in a bimanual operation conducted on flight.

The rest of the paper is organized as follows. Section II
revises the literature in human interfaces for teleoperation.
Section III presents the system modeling and design, whereas
Section IV focuses on the visual human pose estimation.
Experimental results are reported in Section V, providing
the conclusions in Section VI.

II. RELATED WORK

The idea of replicating human motion with the robot is not
new. One of the oldest work of replicating human motion on
the humanoid robot can be found in [15]. Zhao et al. pre-
sented kinematics mapping and similarity of the humanoid
and the robot using motion capture system (MCS), consisting
in six cameras, and 38 reverberation markers on actors body.
Production of the affordable depth cameras and development
of the Human Pose Estimation (HPE)Visual Human-Pose
Estimation (VHPE), Leader-Follower algorithms, made such
MCS or Body-Machine Interfaces (BoMI) redundant. Ou
et al. [16] developed a system imitating human motion
captured with kinect with NAO humanoid robot. Human
motion mimicking is achieved with the help of normalized
vector representation of the human body and the optimiza-
tion of the error function that compared normalized vector
representations of the robot and the human. Paper also
introduced collision avoidance and balance maintenance to
satisfy constraints imposed by the robot design. Alibeigi et al.
[17] presented similar system that maps upper-limb human
motion obtained with kinect sensor to the NAO robot.

Lin et al. [18] presented a system that mapped discrete
body gestures obtained by Kinect sensor to the 5DOF robot
manipulator. Syakir et al. [19] used kinect depth sensor to
obtain human pose which was used to directly command
4DOF robot manipulator. Angles determined from the human
pose were directly mapped onto the robot manipulator.
Bujalance et al. [20] presented real-time gestural control of
the 6DOF robot manipulator with human gestures inferred
from OpenPose [21] and HMR [22] as basis for human-robot
mapping. Only direct geometrical mapping of the human arm
was achieved in real-time. Inverse kinematics mapping based
on the end-effector position was not possible. Luo et al. [23]
presented a system for bimanual teleoperation of 6DOF robot
manipulators based on human pose obtained from a Kinect
sensor, achieving robot arm motion with on-line trajectory
generator paired with Cartesian impedance control.

VHPE interface is an improved version of the human pose
control (HPC) interface used to control UAV in a maze
scenario as presented in [24]. Similar approach of using
human pose estimation to control UAV was presented by
Marinov et. al. [25]. Several software modules have been
developed that use different gestures to discretly control
UAV. Our work differs from presented as it uses human
pose estimation to continuously command lightweight ma-
nipulators. It also serves as first systematical comparison
of the different teleoperation interfaces for the lightweight
manipulators.

III. SYSTEM MODELING AND DESIGN

A. System Model

The teleoperation system developed in this work consists
of three main elements, as depicted in Fig. 1 and Fig.
2: the human operator, the teleoperation interfaces (VHPE,
LFAI, 6DOFJ), and the anthropomorphic dual arm (aerial)
manipulator. The following notation will be employed for
the human and the robotic arms, as illustrated in Fig. 2:

• s = {H,L, F}: superscript denoting the human, leader
dual arm, or follower dual arm, respectively.

• Ls1, Ls2: upper arm and forearm links lengths.
• Ds: separation between left and right arms.
• i = {1, 2}, j = {1, 2, 3, 4}: arm (left, right) and joint

indices, respectively.
• qsi = {qsij} ∈ R4: joint position vector of the i-th arm.
• rsi = [xsi , y

s
i , z

s
i ]

⊤: wrist position of the i-th arm.
The arms provide 4-DOF for end effector positioning in

the usual anthropomorphic kinematic configuration: shoulder
flexion/extension (qi1), shoulder adduction/abduction (qi2),
upper arm lateral/medial rotation (qi3), and elbow flex-
ion/extension (qi4). The forward and inverse kinematics of
the anthropomorphic arms, detailed in [11], is denoted as:

rsi = FK(qsi , L
s
1, L

s
2) ; qsi = IK(rsi , L

s
1, L

s
2, ϕi) (1)

Here ϕi = qi2 corresponds to the redundant shoulder joint,
taken as parameter. This kinematic model is applicable to
either the human user, the leader or the follower arms. The
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Fig. 2: Links, joint variables and reference frames for the
human, leader, and follower anthropomorphic arms.

differences between the human and robotic arms in terms of
links lengths and arms separation requires a calibration and
scaling procedure, described in Section III-C. A {XYZs}
reference frame is attached to the shoulder structure of the
arms, with the X-axis pointing forwards, the Z-axis pointing
upwards, and the Y -axis parallel to the shoulder baseline.

B. System Design

The components and architecture of the teleoperation
system developed in this work are depicted in Fig. 3. The
three interfaces are connected to the Ground Control Station
(GCS) where the two main software modules (the human
pose estimation, detailed in next Section, along with the
dual arm control program) are executed. We employ an Intel
RealSense D415 camera for the VHPE, and a 3DConnexion
Space Mouse as 6DOFJ. The dual arm program, developed
in C/C++, comprises the low-level arm controller and servo
interface, the kinematics methods, and the task manager
class where the functionalities are implemented [11]. Data
flows from the different interfaces are handled by threads,
using a wireless link for sending the references to the
follower dual arm that executes in the on-board computer
the same software architecture. Two models of lightweight
anthropomorphic arms are employed in this system, as shown
in Fig. 2. The leader dual arm handled by the user is the
LiCAS AC1 model (1.2 kg weight) built with Herkulex DRS-
0201 servos, whereas the follower dual arm is the LiCAS
A11 (2.5 kg) built with DRS-0402/0602 servos.

Fig. 3: Architecture of the anthropomorphic dual arm teleop-
eration system with the three interfaces and aerial platform.

1LiCAS Robotic Arms webpage: https://licas-robotic-arms.com/

C. Lightweight Anthropomorphic Arms control
The follower dual arm is built as a chain of smart servo

actuators that implement an embedded position/velocity con-
troller with trapezoidal velocity profile generation, as detailed
in [10]. In practice, a data packet is sent to each of the arms
servos specifying the reference angular position qFij,ref∀i, j.

Now, two control modes are applied depending on each
type of interface. On the one hand, the LFAI applies directly
a joint-to-joint mapping such that qFij,ref = qLij∀i, j, that
is, the joint position in the leader dual arm, read by the
servo encoders, is directly set as position reference for the
corresponding joint in the follower. Note that in this mode,
the torque control of the leader arm servos is disabled so the
user can move easily the joints, experiencing only the small
friction of the gearbox and control or communication delays
(under 100 ms).

On the other hand, the VHPE and 6DOFJ provide motion
commands in Cartesian space which are mapped into joint
references through the inverse kinematic model given by Eq.
(1), that is, qFi,ref = IK(rFi,ref , L

F
1 , L

F
2 , ϕi).

The 6DOFJ interface provides normalized translational
and rotational velocity references in the range −1 to +1,
denoted as u6D = [u⊤

T u⊤
R]

⊤, where uT = [ux, uy, uz]
⊤

and uR = [uϕ, uθ, uψ]
⊤ are the XY Z and roll-pitch-yaw

commands, respectively. The 6DOFJ is used to command
simultaneously the wrist point of the two arms in Cartesian
space. Denoting by Ts to the control period (0.02 s), and
vmax to the maximum speed (0.2 m/s), the Cartesian position
reference of the follower arms is given by:

rFi,ref = rFi + vmaxTs[uT + (−1)iR6DuR] (2)

where R6D ∈ R3×3 is the joystick rotation map matrix
that determines the way the roll-pitch-yaw commands are
applied to the Cartesian position of the arms. The (−1)i term
imposes asymmetric motions of the left and right arms due to
the action of the rotation component of the joystick. For this
interface, the redundant joint (shoulder adduction/abduction)
is set to a constant value (qFi2 = ±10◦), considering only the
yaw input for increasing/decreasing the YF -axis position of
the arms (this will be used in the box contour benchmark).

The VHPE interface described in next section provides two
references for the follower arms: the Cartesian position of the
human wrist point, rHi , and the shoulder adduction/abduction
angle, qHi2 . As mentioned before, taking into account the
possible differences in forearm, upper arm links lenghs and
arms separation between human user and robotic arms, the
adopted solution consists of performing a calibration process
so the motion commands of the arms are relative to an initial
nominal L-pose (qH,0i = qF,0i = {0, 0, 0,−π/2}), applying
a scaling factor ∆ = diag(δx, δy, δz) ∈ R3×3 to adapt the
displacement of the human arms according to the robot size:

rFi,ref = rF,0i +∆(rHi − rH,0i )

qFi,ref = IK(rFi,ref , L
F
1 , L

F
2 , q

H
i2)

(3)

where rs,0i = FK(qs,0i , Ls1, L
s
2) is the initial calibration

pose of the human/robot arms in Cartesian space.
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Although one can argue that comparing interfaces that
command robot arms in different operational spaces (LFAI
in joint space, 6DOFJ and VHPE in cartesian space) can
render comparison incomplete, in this instance this is not the
case. Mainly due to the system design, small size difference
between leader and follower arms doesn’t affect operators
perception of the difference in between commanded and
achieved end effector pose, which in terms doesn’t affect op-
erator performance. Especially bearing in mind the human’s
capability to use visual feedback to correct position of the
follower arms as needed.

IV. VISUAL HUMAN POSE ESTIMATION (VHPE)
TELEOPERATION

The VHPE teleoperation method generates Cartesian and
joint references for dual robotic arms based on the RGBD
camera image of the human user. VHPE can be divided into
human pose estimation, command generation, and filtering.

Fig. 4: Scheme of the VHPE teleoperation system

1) Human pose estimation (HPE): OpenPose [21] neural
network architecture is used for 2D human pose estimation.
Input in the neural network is the RGB image. Output of
the HPE is array of detected keypoints kp, representing the
shoulder, elbow, or wrist points:

kp = [kp1 kp2 . . . kpn−1 kp]
⊤
, kp ∈ Rn×2 (4)

which consists of the pixel positions of n detected key-
points in the camera image:

kpn = (pxn, pyn) (5)

With keypoint pixel positions and its respective measured
depth, from the pointcloud we can get Hp which consists of
the keypoint positions in the Cartesian space w.r.t. camera
coordinate frame:

Hp = [hp1 hp2 . . .hn−1 hn]
⊤
, Hp ∈ Rn×3 (6)

The conversion of the detected keypoints from camera
frame to the human operator body frame is done as follows:

Ĥp = TH
CHp (7)

where TH
C represents homogeneous transformation matrix

which denotes spatial transformation between camera frame
and human trunk frame, and it is determined beforehand.

2) Command generation: Detected shoulder, elbow and
wrist keypoints in the Cartesian space w.r.t coordinate frame
of the human trunk are used to calculate pes and pwe which
denote vectors from shoulder to elbow and elbow to wrist
respectively. We use position vectors for each arm indepen-
dently. To extract roll angle of the human arm, orthogonal
projection of the left and right pes on the yz plane of the

corresponding shoulder coordinate frame is used. Orthogonal
projection is calculated as follows:

s
epyz = Myz(Myz

⊤Myz)
−1Myz

⊤pes. (8)

Matrix Myz ∈ R3×2 is composed of column unit vectors
ey = [0, 1, 0]⊤ and ez = [0, 0, 1]⊤ of the shoulder coordinate
frame. Shoulder roll angle is calculated as:

θs = sgn(espx)acos

(
e
spyz · ez
∥espyz∥

)
, (9)

and can be thought of as a rotation about shoulder ante-
rior/posterior axis. The end effector position of the follower
robotic arms is then emulated as scaled human wrist position
w.r.t. shoulder coordinate frame, applying the calibration and
scaling procedure given by Eq. (3).

3) Filtering: Command references generated by the
VHPE should be filtered to remove outliers due to occlusions
and noise from depth camera, implementing for this purpose
a Kalman filter that assumes a constant velocity model for the
human arms. The state vector comprises the XY Z position
and velocity of the wrist point of the human user:

xHi =
[
xHi yHi zHi vHx,i vHy,i vHz,i

]
. (10)

The measurements vector includes the wrist position given
by the VHPE:

zHi =
[
xHi yHi zHi

]
. (11)

Estimation uncertainty is characterized by process and
measurements covariance matrices Q and R, respectively,
assumed to be diagonal. Occlusion of the shoulder or elbow
joints caused by the forearm or the hand of the human
user may cause incorrect depth reading which results with
wrong position vector. To filter wrongly determined position
vectors, we measure norm of the pwe and the pes. We divide
current norm of the position vectors p with average of that
position vector ap obtained during calibration procedure.
During calibration procedure, the human user adopts an L-
pose with the forearm lifted, so there are no occlusions.

fp =
∥p∥
∥ap∥

. (12)

If fp is greater than 1.5 the measurement is omitted, other-
wise, the measurement is kept. Occlusions present greatest
limitation of the system. Norm filtering prevents unwanted
reference jumps caused by the occlusions.

V. EXPERIMENTAL VALIDATION

In order to compare the three teleoperation interfaces
(6DOFJ, LFAI, VHPE) we evaluated how users executed two
different benchmarks, taking inspiration on ISO 9283:2003
norm and from our previous work [26]: 1) Following edges
of the box, 2) Following letter S contour. These are depicted
in Fig. 6. The LFAI and VHPE interfaces were also tested
on flight with the aerial manipulation robot. Experimental
parameters are presented in Table I.
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Fig. 5: Comparison of box edge following benchmark with 9 study participants and 3 interfaces: 6DOFJ, LFAI and VHPE.

Fig. 6: Controlling both arms to follow edge of the box
through points 1-2-3-2-4-2 (left), Controlling one arm to
follow contour of the letter S from point 1 to point 2 (right).

TABLE I: System parameters for the experimental validation

Parameter Value Parameter Value
R 500I(3) Ts 0.04 s
Q11,Q33,Q55 5 zch 2 m
Q22,Q44,Q66 0.5 ϕc

h, θch, ρch 130, 0, 90
LL
1 , LL

2 0.2 m LF
1 , LF

2 0.25 m
DL 0.25 m DF 0.36 m

A. User Study

We evaluted three teleoperation interfaces: 1) 6DOFJ 2)
LFAI, 3) VHPE, shown in Fig. 1 with two benchmarks.
First task was box edge tracking with both manipulators, and
second task was following contour of the letter S with just
one manipulator as shown in Fig. 6. Tasks were executed
in sequential order. There were 9 participants which were
divided into three different groups, and one expert user
taken as ground truth. Names of the group corresponds to
the order of usage of the teleoperation interfaces. Group
123 firstly used 1) 6DOFJ, then 2) LFAI and lastly, 3)

VHPE control. Second group is 321 and third group is 231.
Different group ordering was used to average across groups
to remove possiblity of influencing results by the order of
experimentation.

NASA Task Load Index (TLX) is used to rate operator
workload while executing some task. Workload consists of
mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration. Complete NASA TLX consists
of two parts. First part is used to determine participant’s
subjective importance for each category that makes work-
load. Second part includes rating each workload category
for certain task on linear scale from 1-21. NASA raw TLX
(RTLX) omits first part due to some concerns that it skews
overall measurements. For experimental evaluation of the
different control modalities, we employed raw NASA TLX
with linear scale range from 1-10 where lower number
indicates less workload. Although there is lower resolution
overall trend will be the same.

B. Population

Experiments were conducted in collaboration with 9 par-
ticipants and one expert user whose performance is con-
sidered as ground truth. Participants ranged in age 22-39
(mean: 26, std: 5.76) and were male. A limitation of the
study arises from small diversity of the study population,
which consisted mainly of young male university students.
It is not known to what extent age and gender influence the
subjective experience of workload. Such discrepancies might
reveal interesting differences between age and gender groups
rather than invalidate the obtained results.

C. User Study Results

Box following trajectories for each participant and the
different teleoperation interfaces are shown in Fig. 5. Fig.
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Fig. 7: Comparison of S-letter following benchmark across 9 participants with three interfaces: 6DOFJ, LFAI and VHPE.
.

8 represents the overall NASA RTLX ratings for every
participant and control modality (6DOFJ, LFAI and VHPE),
for the box following benchmark. Besides that, experiment
duration of each participant is shown.

Fig. 8: NASA RTLX rating for each participant (lower is
better) and duration of the box edges following benchmark
(lower is better)

Compared to the other teleoperation modalities, VHPE
has highest overall RTLX ratings across participants for the
edge of the box following task. Average duration of the box
following experiment using VHPE is 56.7 seconds, using
LFAI 35.8 seconds and with 6DOFJ is 31.2 seconds. It took
participants almost twice as long to finish experiment with
the VHPE compared to the 6DOFJ. Which is partially in line
with NASA RTLX results.

Most of the participants found 6DOFJ the least straining
for the box-following task which can be seen in Fig. 9. It
is possible to notice how trajectories of the 6DOFJ are most
accurate for the box edge following task.

Fig 10 shows NASA RTLX ratings and experiment dura-
tions of the each participant for all teleoperation interfaces
in the S following task. Average duration of the S following

Fig. 9: Comparison of the averaged NASA RTLX across
workload categories for different tasks (note: scale ranges
from 1-10, for visibility purposes, we plot only to 6, lower
is better).

experiment for the VHPE was 24 seconds, for the 6DOFJ
16.8 seconds and for the LFAI 14.8 seconds.

Averaged workload categories shown in Fig. 9 show that
LFAI averaged smallest workload on each of the categories
compared to the 6DOFJ and the VHPE. It also evidences
that using 6DOFJ for the task of following complex curved
3D trajectory is harder in terms of the mental demand, frus-
tration, effort and physical demand compared to the VHPE.
Participant trajectories are shown in the Fig. 7. It can be seen
that trajectories made with 6DOFJ are slightly different than
trajectories made with LFAI or the VHPE. From obtained
data, it is possible to conclude that 6DOFJ is by far superior
in the edge box following task, taking in consideration
experiment duration and overall taskload ratings. However,
in the S following task, participants performed better with
LFAI and VHPE compared to the 6DOFJ. Averaged NASA
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Fig. 10: NASA RTLX rating for each participant (lower is
better) and duration of the contour S following benchmark
(lower is better)

RTLX shows that LFAI induces the least workload across
participants and tasks.

D. Bimanual Aerial Manipulation of Flexible Object

This experiment is intended to evaluate the leader-follower
dual arm interface (LFAI) and the visual human pose estima-
tion (VHPE) in a bimanual manipulation operation with an
helical bird flight diverter, a device typically installed on high
voltage power lines to prevent the collision of birds. These
devices are nowadays installed by skilled human workers in
highly risky conditions. Therefore, the goal is to evaluate the
suitability of these interfaces on a lightweight and compliant,
anthropomorphic dual arm manipulator integrated on a multi-
rotor platform. The operation, depicted in Fig. 11, consists of
rotating the device from the horizontal to the vertical position
to prepare for the insertion of the device on the power line.
Three experiments are conducted with the LFAI: 1) motion
sequence in testbench without the device grasped, 2) motion
sequence in testbench with the device grasped, 3) motion
sequence on flight with the device grasped. The evolution
of the joints trajectory is depicted in Fig. 12. Note that the
weight of the device (0.6 kg) causes a significant deflection
on the compliant joints that must be compensated by the
user. The performance of the LFAI compared to the VHPE
can be appreciated in the video. In this case, the LFAI results
are better suited since it allows fast and direct replication of
the joint angles generated by the human operator.

Fig. 11: Anthropomorphic dual arm aerial robot manipulating
an helical bird flight diverter in a power line mockup testbed.
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Fig. 12: Evolution of the left and right arms joints during the
rotation of the helical bird diverter in three cases: no device
grasped, device grasped in testbench, and device grasped on
flight (LFAI teleoperation).

VI. CONCLUSION

In this paper we presented three different teleoperation
interfaces for the lightweight robotic manipulators. We
present 6DOF Joystick (6DOFJ), Leader-follower Arms In-
terface (LFAI), and Visual Human Pose Estimation interface
(VHPE). We extensively tested interfaces with multiple users
in the laboratory environment on two different benchmarks.
Box following task was designed to evaluate performance of
users when following straight paths with both hands, and S
contour is used to evaluate following of the curved paths
with one hand. For each task, each participant and each
control modality, we measured experiment duration, end-
effector position and overall workload felt by participant
with NASA raw TLX. Based on the obtained data, we can
conclude that LFAI is by far easiest to use in terms of induced
workload across participants. LFAI and VHPE are evaluated
for the bird diverter insertion task, where LFAI proved
superior to the VHPE. Informed improvements of the VHPE
teleoperation system could result in higher usability and
less workload imposed on the operator. Main improvement
is related to complete mitigation of the problems caused
by the occlusion (wrong depth measurements). Adding one
more camera to the system, and using different human pose
estimation algorithm could significantly improve the system.
Further work will be related to the installation part of the
helical bird diverter, forces interaction and improvement of
the VHPE system.
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