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“AI has been advancing at an incredible pace. 
It started with perception AI — understanding 
images, words, and sounds. Then generative 
AI — creating text, images and sound. Now, 
we’re entering the era of physical AI, AI that 
can proceed, reason, plan and act.” 

Jensen Huang, Nvidia founder and CEO, CES 
2025, January 5, 2025

Robotics has experienced a transformative evolution 
over the last two decades, progressively expanding 
its reach far beyond its origins in industrial automa-
tion. Robots today are significantly more autonomous, 
more intelligent, lighter, more robust, and less cost-
ly than all previous generations. These achievements 
have been driven by advances in modelling, dynami-
cs, control, planning, learning, and reasoning, sen-
sors and actuators, computing power, miniaturization 
of electronics and batteries, 3D printing and additive 
manufacturing, materials and especially soft materials. 
But robotics is actually today not only a “decathlon 
of engineering and computer sciences”, but it bene-
fits from highly interdisciplinary research, involving 
biomechanics, neuroscience, medicine, psychology, 
and industrial design, in addition to all the engineering 
disciplines. The convergence of these developments 
with rapidly evolving artificial intelligence techniques 
has created the foundation for a new generation of co-
gnitive, adaptive, multi-purpose machines - commonly 
referred to as Physical AI, Embodied Intelligence, 

or AI-Powered Robotics. At its core, intelligent roboti-
cs fundamentally manifest AI in physical form.

The strategic importance and potential of intelligent ro-
bots extends beyond technical innovation; it is central 
to address some of humanity’s most pressing challen-
ges, as highlighted by the United Nations’ Sustainable 
Development Goals (SDGs) and the major strategic 
pillars of the Horizon Europe program. A major challen-
ge which is addressed by robotics, is the demographic 
change, implying a decreasing and ageing population. 
The shrinking working-age population puts pressure 
on labour markets and the economic competitiveness, 
healthcare system, and welfare states. In Europe there 
are 22.2 million people working in human health and 
social work. The new wave of AI-based robotics can 
provide, in the next decade, massive relieve in this re-
spect. Moreover, manufacturing represents the first 
economic driver in Europe, accounting for over 80 % 
of industrial value added and more than 31 millions of 
employees, followed by water supply, sewerage, wa-
ste management and remediation activities1,2. Robotics 
can greatly contribute to give impetus to these sec-
tors that require intelligent physical action and robots 
to substantially support humans in all these activities. 
Robotics can successfully address the challenges of 
effective, sustainable and resilient industry, efficient 
and environmentally-friendly agriculture and food chain 
supply, effective asset predictive maintenance and ma-
nagement, as well as the growing challenges on se-
curity, safety and healthy working and life conditions. 
Realizing this vision demands sustained investment in 
fundamental research, cross-disciplinary collaboration, 
and strong engagement between academia, industry, 
and policy makers. A comprehensive strategy must ali-
gn Europe’s expertise in AI, robotics, and engineering 
with real-world application areas such as healthcare, 
advanced manufacturing, agriculture, space explora-
tion, and environmental sustainability.

EXECUTIVE 
SUMMARY

1https://www.statista.com/statistics/1195197/employment-by-sec-
tor-in-europe

2 https://ec.europa.eu/eurostat/cache/htmlpub/key_figures_on_europe-
an_business_2021/industry.html
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The robotics landscape is at an inflection point, dri-
ven by hardware advancements and by AI breakthrou-
ghs such as deep learning, reinforcement learning, 
and foundation models. While, until recently, even the 
largest robotics companies were of moderate size in 
the overall economic landscape and most robotics 
research was performed by academic and resear-
ch institutions, we are now witnessing a fundamental 
transformation in the field. Major U.S. technology com-
panies - including Tesla, Google, Amazon, and Nvidia 
- are making massive investments in robotics, while 
new players such as Figure and Physical Intelligence 
have emerged with billion-dollar funding rounds. The 
declared ambition of many of these companies is to 
achieve general-purpose physical intelligence, thus ai-
ming at creating a humanoid robot capable of perfor-
ming most, if not all, physical tasks that a human can 
accomplish. While expectations and the market hype 
surrounding this vision are undoubtedly exaggerated 
in the short term, the level of investment and talent 
being directed towards embodied AI clearly indicates 
that this next stage in robotics is here to stay. Even if a 
true breakthrough will take a decade or more, it is clear 
that robotics is entering a new era of accelerated de-
velopment. Mirroring this trend, China has designated 
humanoid robotics as one of its core technological pri-
orities, alongside electric mobility, renewable energy, 
and low-altitude transportation. The question is how 
do we respond to this paradigm shift?

Robotics is a domain where European research and 
industry are at the forefront of international deve-
lopments, see the next section regarding the sta-
te of the art. The European Commission through 
its various funding schemes together with national 
programs in European countries have led to a wor-
ld-leading research environment, a strong tradition 
of industrial and service robotics, and a well-establi-
shed ecosystem of suppliers. These are very strong 
assets as the new robotics race unfolds. A cohesi-
ve and forward-looking strategy—uniting academia, 
stakeholders and industry— is essential to ensure 
leadership in robotics.

A balanced robotics AI strategy must invest not 
only in algorithmic development but in the full ecosy-

stem where AI will operate - including physical pla-
tforms, sensing technologies, processing, and 
actuation systems. Some of the world’s leading AI 
players already recognize that intelligence cannot exist 
in isolation from the physical world, coining the term 
Embodied AI to highlight the deep integration of AI 
with robotics. While many focus on training ever-lar-
ger models on gigantic datasets, true AI leadership re-
quires advancing embodied intelligence - where per-
ception, reasoning, and action coalesce in real-world 
environments. Achieving this vision demands: 

• Scalable and cost-effective robotic hardwa-
re for sensing, computing, and actuation, with a fo-
cus on resource conservation, life cycle extension, 
carbon footprint, energy efficiency, circularity and 
recyclability.

• Building up and expanding capabilities in 
transferable AI methods including founda-
tion models, especially in the forms relevant for 
robotics, such as Visual-Language Models (VLM) 
or Visual-Language-Action Models (VLA).

The road to general-purpose AI in the physical wor-
ld will be shaped by both near-term and long-term 
technical challenges. Beyond advances in language 
models and computer vision, robotics requires bre-
akthroughs in modeling, control, planning, learning, 
reasoning, and human-machine interaction and in-
tegration - not just at the cognitive level but also at 
the physical level. Critical hardware technologies—
including actuators, sensors, processing, batteries, 
and novel materials - must evolve in parallel with AI 
algorithms. A major concern in both AI and robotics 
research is that excessive specialization in niche mo-
dels may limit broader cross-disciplinary innovation. 

The euROBIN network therefore identified at its start 
in 2022 that achieving cognition-enabled transferable 
embodied AI is the most fundamental scientific and 
technological challenge that is currently hindering the 
breakthrough of AI-powered robotics, and hampering 
its wider deployment and commercialization. The main 
scientific aim of euROBIN is therefore to advance ro-
botics by providing robots with general, flexible, and 
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pragmatic methods for the transfer of skills and know-
ledge among robots, tasks and environments. Robots 
are general-purpose machines in principle; endowed 
with an advanced ability to transfer solutions across 
different tasks, domains, and robots, they will also 
become general-purpose machines in practice. The 
recent international developments mentioned above 
confirm that the forecast and focus were clear-si-
ghted, even though foundation models – a novel po-
pular approach to achieve transferability – were not 
known at project launch. The topic of transferability in 
the robotics context is so demanding that it will conti-
nue to be a main focus for research and development 
over the next few years. 

To build truly general-purpose robots, systems 
must be capable of interacting with unfamiliar, unpredi-
ctable environments, learning new tasks from humans, 
other robots, and their surroundings, and operating 
autonomously in unstructured settings. Many of these 
environments, from disaster zones to deep-sea explo-
ration, lack predefined models or sufficient training 
data, necessitating data collection, active perception, 
and lifelong learning strategies. These challenges will 
define the next frontier of AI-powered robotics.

To ensure that the next generation of robotics ser-
ves society, a human-centered perspective must 
guide development, integrating economic growth, su-
stainability, climate resilience, and ethical considera-
tions in line with the SDGs. Technological progress 
must be accompanied by research into the social, 
ethical, and legal dimensions of intelligent roboti-
cs. Building trust in AI-powered robots requires 
understanding how attitudes toward robotic systems 
evolve across cultures and over time. Embodied AI 
must be designed not merely for efficiency but for 
fairness, transparency, and social equity.

To preserve a vantage position in robotics, leading in 
both research output and industry creation, and con-
solidate this leadership, it will be crucial to retain con-
trol and strengthen the entire value chain, from desi-
gn to manufacturing and deployment and innovation. 
Past mistakes in critical technology sectors, such as 
semiconductors, have led to dependencies that must 

not be repeated in robotics. The window for decisive 
action is narrow. 

A strategic approach to face the unfolding robotics 
race is to leverage our European diversity, the abun-
dance of knowledge and the capabilities distributed 
across the continent. euROBIN, for example, ad-
dresses this challenge by building a common softwa-
re and data infrastructure as well as a cooperative 
way of advancing and benchmarking robotics capa-
bilities. This allows us to advance jointly at a faster 
pace, making use of the potential of a vibrant commu-
nity. The goal is to bring many of the larger research 
labs to an end–to-end robotics competence level in 
major application fields and to better disseminate the 
in-depth competence and results of specialized labs 
across Europe. New start-ups and technology tran-
sfer to larger companies are very likely to emerge if 
we sustain and extend this activity over the upcoming 
years. Maintaining and raising leadership in the new 
era of robotics will require massive further invest-
ment, a coherent strategy, and a coordinated 
effort across policy, research, industry, and the 
financial sector. The time to act is now.

ROBOTICS  ACHIEVEMENTS 
IN THE LAST DECADES

Research on robotic manipulators, historically the 
first large family of robots, saw significant achieve-
ments in the last 20-30 years. Robots can manipulate 
and grasp objects with different shapes, with varying 
positions and trajectories. Compliant control allows 
them to be guided by the forces applied on them 
rather than being programmed to reach predefined 
positions, thus adjusting to contact with objects or 
humans. Steady progress has been made in the de-
sign of new materials that led to several prototypes, 
including a few commercial products of soft grippers 
and soft robotic hands for manipulating non-rigid 
objects, and proofs of concept of soft actuators flui-
dic, pneumatic, or based on functional materials such 
as shape-memory alloys. In the medical field, resear-
chers showed that it is feasible to harness neural or 
muscular signals to control prosthetic limbs. In addi-
tion, digital twins of large environments enable robot 
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programming at a more abstract level and facilitate 
the realization of robotics tasks of greater complexity, 
for example in production lines.

Transfer of these and other technologies to the com-
mercial domain has resulted in industrial robots that 
can tackle increasingly complex tasks. A key advan-
cement has been the introduction of collaborative 
robots (co-bots) that have expanded automation into 
less structured industry environments. Several robotic 
hands and grippers are on the market, for manipula-
ting and grasping different categories of rigid objects. 
Surgical robotics has grown since the early 2000s 
into one of the main markets for service robotics, and 
many European start-ups are now leveraging minia-
turization, machine learning and soft components to 
lower prices and expand use-cases. Wearable robots 
augment human bodies. Robotic arms operate on 
spacecrafts and autonomous rovers, demonstrating 
robustness in an extremely challenging environment.

Allowing robots to operate autonomously in novel si-
tuations and to approximate the dexterity and agility 
of living organisms have been key challenges for ro-
botics since at least the 1960s. For several decades, 
robotics researchers have been experimenting with 
neural networks and machine learning as a potential 
solution to those challenges, and there is now sizable 
literature on how to leverage these techniques to 
tackle robotics problems that had previously proven 
hard to solve. Today, techniques to teach robots still 
rely on the two principal styles of machine learning 
that have been employed in robotics since the 1990s. 
On one side there is a family of algorithms that allow 
robots to learn from expert data, typically provided by 
a human demonstrator who demonstrates the target 
action while their movement is captured by visual or 
motion sensors. This approach has proved appli-
cable in tasks ranging from grasping to manipulation 
of complex objects. The other type of learning algo-
rithms enables robotic systems to learn through trial 
and error without a prior formalization of what consti-
tutes the correct control policy. Best exemplified by 
reinforcement learning (RL) this method typically re-
lies extensively on computer simulations of the robots 
and its environment to create enough learning cycles 

and learn a robust enough policy before testing it on 
the actual robot. Use of RL in robotics was hinde-
red, for a long time, by the exploration phase, which, if 
not properly bound, can become too computationally 
and time intensive and its inability to easily scale to 
high dimensions. Recent advances leverage the in-
creasing effectiveness of deep-learning and visually 
realistic physics-based simulation.

The design and control of autonomous vehicles, from 
cars and drones to walking and swimming robots, 
to enable navigation in different environments has 
improved thanks to sensors such as compact IMUs 
(Inertial Measurement Units), compact cameras, 
compact LiDAR, and to the use of machine learning. 
SLAM (Simultaneous Localization and Mapping) is 
now a mature technology (mainly originated in Euro-
pe) that allows mobile robots to explore an unknown 
environment while building a map of it. Legged robots 
can now walk on regular or moderately irregular ter-
rains. Humanoids have become more agile and can 
bend down to pick up objects on the floor and walk 
while carrying objects in conjunction with humans or 
other robots. Aerial robots have robust flight capa-
bilities and various degrees of autonomy, including 
autonomous flight at high-speed relying on cameras 
when in controlled light conditions. Drones with ma-
nipulation capabilities have been developed and te-
sted, bridging the gap between the two traditionally 
separate areas of robotics. Underwater robotics of-
fers a wealth of solutions, from small robot fishes to 
larger machines that can explore the depth of oceans. 
A few prototypes of autonomous cranes and other 
large machines for construction have been deployed.

Advancements in autonomous navigation have resul-
ted in the commercial success of robotic vacuum cle-
aners (now the largest share of marketed commercial 
robots), lawn mowers and pool cleaners. Partially or 
totally autonomous drones are now being deployed 
for surveillance, monitoring, defense, inspection, and 
maintenance. The ongoing real-world tests of driver-
less cars are also a result of decades of research on 
autonomous navigation (again, first pioneered in Eu-
rope). Wheeled robots are used in logistics and wa-
rehouse management, and mobile robots of various 
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types are applied to search and rescue and disaster 
management. Finally, wheeled and tracked rovers 
have been sent to explore bodies of the solar system.

Since the birth of modern robotics, European robo-
tics research and technological development have 
been (and currently are) major drives on a global level, 
underpinned by a strong manufacturing and service 
robotics industry. Programs of the European Com-
mission such as Horizon Europe, H2020, EIC, and 
ERC have played a pivotal role in fostering scientific 

excellence and collaboration and technology tran-
sfer across Europe and strengthening internatio-
nal partnerships. European researchers contributed 
pioneering achievements, such as the first remotely 
operated robot deployed in nuclear service, Mascot 
(1959), still operational today in the Joint European 
Torus, or the first long-distance autonomous car by 
Dickmanns in 1986. 

Today, Europe is the worldwide leader in robotics 
academic research. Over the last 5 years, EU coun-
tries published 54819 papers in Robotics, surpas-
sing China (39912) and the United States (36160). 
Together with associated countries (UK, CH, TU, IL), 
the count is 72600  (source: Scopus).

Europe is also an important robotics market. With over 
90,000 industrial robots installed in 2023, EU coun-
tries are second only to China (276,000) and in front 
of Americas (55,400) . 778,000 industrial robots are 
in operation in Europe, which corresponds to 18% of 
the worldwide robot stock.(source: IFR World Roboti-
cs Report on industrial robotics). In the service robo-
tics market, Europe is leading. 405 companies (44%) 
are located in Europe. Asia (268 companies) holds a 
share of 29% and 233 companies (25%) are from the 
Americas (almost exclusively North America) (source: 
IFR World Robotics Report on Service Robotics). 

European-funded robotics research has not only pro-
duced fundamental results but has also significantly 
impacted the development of our industry. One suc-
cessful example of technology transfer from EU-fun-
ded programs to industrial development was the birth 
of the collaborative robot industry (including Universal 
Robot, Franka Emika, and dedicated ABB, KUKA, and 
COMAU new product lines). This was made possible 
by the development of a new generation of light-wei-
ght, sensitive manipulators with advanced control fe-
atures and the scientific assessment of safety risks 
for humans. These results emerged to a large extent 
from EU-funded projects such as Phriends and solidi-
fied in the relevant ISO norms on collaborative robo-
tics. This has resulted in a sector that today is worth 
10% of the overall industrial robotics market and is 
growing. Similarly impactful research breakthroughs 
mainly originated in Europe are probabilistic robotics 
with its impact in Simultaneous Localization and Map-
ping (SLAM), which was a major enabler of mobile ro-
botics. Many European breakthroughs have opened 
entirely new research and application areas, including 
Robot Programming by Demonstration, Soft Roboti-
cs, Bioinspired Systems, Neuromorphic control, and 
Neural interfaces for prosthetics and rehabilitation. 

Robotics research advanced and accumulated over 
the last 20-30 years the ingredients necessary for a 
large leap step. preparing to enter the era of AI-based 
general-purpose robots. It is now time, also for Euro-
pe, to take the next steps and harvest the results of 
this long-lasting research endeavour. 
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Equipped with the appropriate level of knowledge, ro-
bots will have a certain level of understanding of the 
world that surrounds them and be capable of inter-
preting its dynamics in real time and reason about it. 
Deep learning, large-language models, and other AI 
technologies have gone from one breakthrough to 
the other. However, action and sensing in the physi-
cal world pose different and greater challenges than 
analysing data in isolation. AI-powered robots will be 
endowed with faster control capabilities for real-time 
planning and reasoning, robust execution of actions 
capable of safely handling unexpected contacts and 
disturbances, and the ability to optimize energy consu-
mption during motion and task execution. New bodies 
and hardware components enabling robots to act and 
perceive the world as humans, and to become more 
efficient, will open new avenues for the deployment of 
robots. In parallel, advances in materials, micro and na-
notechnologies, biohybrid systems open new avenues 
for importantly improving interaction, interfaces and 
integration between the human body and the robotic 
system, thus enabling more effective communication, 
collaboration and cooperation. New manufacturing 
processes, such as additive manufacturing and 3D 
bioprinting, will provide a great boost to robot fabri-
cation processes by addressing the huge challenge 
of deploying affordable technology and sustainability. 

The key ingredients to achieve this are multi-faceted. 
We divide them here in five major categories (“Ro-

bot Learning and Reasoning”, “Planning and control”, 
“Human-robot interaction”, “Human-robot integra-
tion”: Bionics and Biohybrid Robotics”, and “Robot 
bodyware”). This document provides a brief overview 
of the key challenges facing AI-powered robotics 
from both research and technology perspectives and 
examines the challenges coming from applications in 
multiple domains. The document has been edited by 
the euROBIN consortium, based also on an extensi-
ve set of interviews involving worldwide robotics lea-
ders, to include a global perspective. The discussions 
additionally materialized in a set of articles co-autho-
red by those experts, and which address the challen-
ges of the fields above at a higher level of scientific 
detail, and which were submitted to high-rank robo-
tics journals.

ROBOT LEARNING AND  
REASONING

The unprecedented advances in foundation models, 
from Large Language Models (LLMs) to Vision-Lan-
guage-Action models (VLAs), has raised expecta-
tions that general intelligence for robots will become 
a reality. The vision of such robots - capable of under-
standing high-level instructions, decomposing them 
into executable tasks, and adapting dynamically to 
different environments - suggests a profound shift in 
how disembodied AI and robotics interact. Robotics 
presents unique challenges that cannot be solved by 
solely resorting to data-driven approaches. 

EUROBIN’S PROPOSAL 
FOR EUROPE 
ROBOTICS STRATEGIC 
AGENDA
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For example, whereas text-based AI can be trained 
from data collected at scale from the internet, robot 
learning requires grounding high-level reasoning, un-
derstanding semantics and causality in real-world 
physical interactions, safety constraints, and 
multimodal sensorimotor experience - aspects 
that cannot be fully captured through passive data 
collection alone. Addressing these challenges de-
mands a strategic combination of model-based re-
asoning, structured learning, and data-driven 
adaptation rather than relying solely on learning to 
discover solutions that are already well understood 
through physics and engineering principles.

One fundamental challenge is bridging the reality 
gap between simulation and real-world environmen-
ts. While learning in simulated environments can ac-
celerate development, transferring policies to the real 

world remains difficult due to imperfection of dynamic 
models, sensor noise, and difficulty modeling envi-
ronmental variations. Even with domain adaptation 
techniques, purely data-driven models often fail to 
generalize beyond the specific conditions they were 
trained in. Research must focus on improving sim-to-
real transfer through hybrid approaches that integrate 
data-driven learning with physics-based models to 
allow robots to refine and validate learned behaviors 
in real-world conditions. This will ensure that robotic 
control strategies remain robust across different en-
vironments and tasks. A second critical challenge is 
ensuring safety and generalization in robot lear-
ning. Unlike language models, incorrect predictions 
and failures in robotics can lead to physical dama-
ge, system malfunctions, or even harm to humans. 
Research must develop methods that allow robots 
to predict and mitigate risks before executing 

Figure 1: Short-term and long-term challenges for further endorsement of AI in robotics, order by increasing level of complexity. Note that these challenges 
may not be overcome sequentially and proceed in parallel.
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actions. This includes human-in-the-loop safety me-
chanisms, explainable AI techniques and formal ve-
rification methods to create learning robot systems 
that are not only data-efficient but reliable. Combining 
model-based control with learning-based adaptation 
will be crucial to ensure that robots can generalize 
across tasks without compromising safety. 

The issue of data scarcity also presents a major 
research challenge. Unlike text and image datasets, 
which can be collected at scale, robotic learning is 
constrained by the high cost and slow acquisi-
tion of physical interaction data. Future research 
should explore ways to maximize knowledge tran-
sfer between robots, environments, and tasks, 
reducing the need for extensive real-world data col-
lection. This includes developing methods for transfer 
learning, lifelong learning, and meta-learning, allowing 
robots to continuously adapt based on past experien-
ces and shared knowledge. Additionally, improved 
digital twin technology should be explored to enable 
more abstract, scalable programming of 
robots in simulated environments before 
deployment.

One of the most pressing open que-
stions in robotics AI is closing the si-
gnal-to-symbol gap - the challenge of 
converting sensorimotor data into structu-
red, abstract, symbolic representations 
that support reasoning, planning and de-
cision-making. Current learning methods 
are effective in recognizing patterns in 
data, but they are limited in generating 
explainable knowledge for high-level de-
cision-making. To address this, research 
must prioritize neurosymbolic AI ap-
proaches that combine neural-based 
learning with structured reasoning as 
a pathway to enabling robots to interpret 
their actions, predict consequences, 
and adapt dynamically to new situa-
tions thanks to learned scalable, in-
terpretable and generalizable models across 
environments, robots and tasks. 

Another critical research direction is ensuring 
explainability and trust in AI-powered roboti-
cs. Many real-world robotic applications require tran-
sparent, interpretable decision-making, particularly in 
fields such as healthcare, autonomous driving, and 
industrial automation. Unlike black-box deep lear-
ning models, which offer little insight into their inter-
nal logic, robot systems must be designed to provide 
justifications for their actions, detect when they are 
uncertain, and allow for human intervention when ne-
eded. Research should focus on developing AI fra-
meworks that integrate knowledge, causal reasoning, 
and symbolic AI methods to enhance interpretability 
while maintaining adaptability. A further critical aspect 
for massively data-driven AI methods is their huge 
energy consumption, in particular in the training pha-
se. The potential economic benefit of more resour-
ce-efficient AI methods is so large that it will trigger 
massive resource investment in this direction.  First 
results, such as those of DeepSeek, attracted a lot of 
attention and fast evolution is expected in this area.

Figure 2: Handing a package from a drone to a humanoid 
robot or single-arm robot manipulator requires to reconcile 
drastically different perception, from different viewpoints 
and sensors, and distinct robot actions from unimanual to 
bimanual actions
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Addressing these challenges requires a shift towards 
hybrid AI architectures that blend learning, mo-
deling, and reasoning, ensuring that robots are not 
only capable of performing tasks but also of flexibly 
executing multiple and increasingly complex activities. 
They should understand and adapt to their environ-
ments in a meaningful, safe, and explainable way. By 
combining model-based engineering principles 
with data-driven adaptation, the next generation 
of intelligent robots will be able to generalize across 
tasks, transfer knowledge efficiently, and operate au-
tonomously in real-world settings without sacrificing 
safety or reliability. 

The future of AI in robotics will likely depend on a ba-
lanced integration of model-based approaches and 
learning-driven adaptation. Structured physics mo-
dels, symbolic reasoning, and hybrid neuro-symbolic 
AI will play an essential role in enabling robots to re-
ason, plan, and act safely and reliably in unstructured 
environments. Another key challenge is investigating 
bio-inspired models grounded in neuroscience to bri-
dge the gap between artificial learning and execution 
for adaptive control. 

Finally, some remarks on the very fast evolving field of 
foundation models for robotics: A quick succession 
of increasingly powerful and multi-modal GenAI mo-
dels – Large Language Models (LLMs), Vision 
Language Models (VLMs), Vision Language 
Action models (VLAs) – have started to blend the 
lines between language, vision and action. By doing 
so, they have demonstrated impressive transfer of 
knowledge and skills between tasks at different levels 
of abstraction. LLMs can now provide robots with ac-
cess to a wealth of knowledge about the world in lin-
guistic form; a feat unthinkable only three years ago, 
even after decades of hand-crafting ontologies for 
this purpose. Large Reasoning Models (LRMs) extend 
LLMs with approaches such as Retrieval Augmented 
Generation and Test-Time to Compute to improve re-
asoning abilities, which is essential for robust robotic 
task planning. VLMs are able to accurately annota-
te (parts of) images with descriptions of astonishing 
detail and depth, whilst seamlessly recognizing and 
parsing text in the images with the same model. VLAs 

have demonstrated state-of-the-art skills on difficult 
tasks such as cloth folding. Even if many of these mo-
dels are made open source, the developments are so 
rapid that benchmarking these models in the robotics 
community to understand their capabilities and limi-
tations lags behind their releases. Nevertheless, it is 
clear that GenAI will be an essential component for 
achieving general-purpose robots.

An open research question for robotics in this con-
text is how to integrate GenAI with typical robotics 
modules such as forward models, dynamics models, 
and memory-based world models. We know such 
modules to be essential for high-performance robo-
tics, but they are not easily embedded in current Ge-
nAI models such as transformer networks. As current 
VLA models already have separate modules for vi-
sion, language and action to make learning tractable, 
we expect modularity will remain essential for more 
complex robotic architectures. A key question is thus 
how to develop hybrid architectures in which the 
generality of GenAI approaches is combined 
with the safety, reliability, and efficiency of mo-
del-based approaches to reasoning, planning, 
control, and human-robot interaction.

PLANNING AND CONTROL

As robot bodies become more complex, new solutions 
are emerging to extend the methodical basis for mo-
deling and controlling them, with tools from geometric 
mechanics and dynamics, differential geometry, and 
algebraic topology. At the same time, machine lear-
ning will play an increasing role in robotics, especially 
for systems for which physical models are lacking or 
are not accurate. The trade-off between model-based 
control and machine learning is one of the main chal-
lenges of future robot control. Developing real-time 
deployable AI-based control models that have an 
analytical interpretation is a major goal on this path. 

The mathematical modeling of soft systems must be 
improved, to effectively control soft robots and their 
interactions with deformable objects. Both machine 
learning approaches and analytical models of mani-
pulation of using geometric mechanics and dynamics, 
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differential geometry, and algebraic topology, that can 
mathematically describe highly nonlinear dynamics 
will be developed in the next years; Similar methods 
can be used for models of complex interaction with 
fluids, such as air and water, which are crucial for 
many applications, from medicine to agriculture to the 
automation of the textile and food sectors. 

The classical approach of fast, reactive, but local con-
trol and slow, global motion planning will be overco-
me as the boundary between the two methodological 
fields will vanish. Advances in algorithms, computing 
power as well as the use of machine learning make 
global planning real-time capable, while advances in 
differential and topological formulations of kinemati-
cs, dynamics and control open up the perspective of 
global task level and configuration space control.

Reasoning methodologies should evolve to incorpo-
rate motion planning and task-planning, interwinding 
control and planning over a long temporal period and 
moving towards a symbolically specified goal, a mis-
sion rather than merely a target position. Cobots can 
benefit from increased custo-
mization and more plug-and-
play solutions based on com-
bined reasoning and planning. 
They will include advanced 
interaction skills that will make 
it easier for end users to adapt 
them to different tasks. 

Multimodal locomotion con-
trol is needed to allow legged 
or amphibious robots to chan-
ge modes of locomotion, swi-
tching from walking to jumping, 
climbing, squeezing through 
narrow passages – including 
not only efficient control of each 
different gait but also, crucially, 
autonomous decision on when 
to switch gait. Legged systems 
such as quadrupeds and hu-
manoids will largely benefit from a co-design of har-
dware and control, using massive parallel simulation 

in AI-based evolutionary processes. Advances in the 
understanding of resonances on elastic multi-body 
nonlinear systems will lead to robots with conside-
rably increased versatility and energy efficiency. 

Control of flying robots can be enhanced to combi-
ne stable flight with manipulation, including on-board 
real-time perception and planning. Significant impro-
vements are needed on control of multi-robot sy-
stems where several robots of different types co-o-
perate on tasks, including control of robotics swarms 
with several tens, or even hundreds, of individuals: 
here, progress will be required on creating shared 
representations of the environment (that different 
robots may observe from varying points of view and 
with different sensors) as well as on common operati-
ve systems and communication protocols. 

Significant improvements are also needed on the re-
al-time and computation performance of the control 
methodologies, to dramatically increase the perfor-
mance and reduce the deployment efforts of the ap-
plications.

Figure 3. An open challenge is how to control multi-robot systems 
where several robots of different types co-operate on tasks and 
share representations of the environment. that they may observe 
from varying points of view and with different sensors.
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HUMAN-ROBOT INTERACTION 

The past decades have seen an increasing number of 
robots deployed in the vicinity of humans, from wor-
kers’ companions in manufacturing settings, vacuum 
cleaners roaming in our living rooms, drones flying 
over our heads, to prostheses attached to our bodies. 
To increase trust and reduce risks, it is urgent and 
necessary that robots become cognizant of their 
environment and socially aware. They must be 
able to interpret, predict and reason about both hu-
man behavior and their own behavior.

Future AI-powered robots should explicitly account for 
human actions, preferences, mental states, and goals, 

factoring in privacy and related laws, enabling them:

• To determine when to act or communicate effectively

• To recognize when to assist, such as when a human 
is unwell, and stepping back upon recovery

• To adapt and give priority to the human, allow them 
the freedom to make their own decisions, and assist 
rather than impose their working rhythm. 

Safe and intuitive human-robot interaction for non-
expert users must be achieved, including two-way 
communication with robots based on either physical 
interaction–when humans and robots get into actual 

Figure 4. Summary of short-term and long-term research goals for control, planning and reasoning. The roadmap is not intended as a temporal sequence, 
but rather as a series of goals with increasing levels of complexity to be researched in parallel. 
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contact with each other, as in the case of rehabilita-
tion and assistive robots, or non-physical, relying on 
verbal or non-verbal interactions, e.g. natural langua-
ge, emotion recognition and control/perception skills. 
Human-centric strategies to control robots whi-
le interacting with the individual and the environment 
are also required, relying on dynamic adaption to the 
user’s needs, multidimensional user monitoring, mul-
tisensory integration. 

Gesture and speech recognition as well as AI-ba-
sed body interfaces can be applied on a larger sca-
le to give commands to robots. Improved interaction 
between humans and soft robots is going to be 
another medium-term research focus, including wea-
rable devices capable of real-time state estimation of 
the body thanks to soft sensors.

Shared representations of the environment that diffe-
rent robots may observe from varying points of view 
and with different sensors are required. Integrating 
task planning with real-time feedback, robots can ef-

fectively co-construct actions with humans, ensuring 
mutual understanding and efficiency.

Ubiquitous perception - achieved by sensing objects, 
subjects, and gestures - represents a crucial challen-
ge to achieving productive human-robot interaction. 
In addition to vision-based sensors, RF-based sen-
sing technologies could be disruptive in the field. The 
ubiquitous perception involves a thorough analysis of 
ethical constraints and privacy risks.

Future challenges are:

• Striving to develop robots that do not overly con-
strain humans, by improving the intuitiveness, and 
ergonomics of human-robot interfaces, to facilitate 
their adoption

• Developing controllers capable of not only main-
taining appropriate distance from humans, but also 
understanding human movements under different 
circumstances, even when they are confused, to 
ensure safe navigation in crowds and other heavily 

populated areas as well as safe 
collaboration in manufacturing 
and industrial settings.

• Conducting broader asses-
sments to evaluate robot inte-
ractions with multiple users, en-
suring controllers do not exhibit 
bias against minorities, with a 
particular focus on protecting vul-
nerable populations.

• Scaling up the use and de-
ployment of collaborative robots, 
both outside and inside industrial 
settings, by lowering the costs 
and improving the adaptability to 
wide areas of applications and 
domains.

• Expanding usage of robots in 
the medical sector, wearable ro-
bots and exoskeletons

Fig. 5 Different types of human-robot interaction
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• Remote intuitive interaction with robots and dro-
nes for the inspection of remote locations and for 
search and rescue operations in collaboration with 
humans, mobile robots capable of navigating in 
crowded spaces, such as hospitals, airports, re-
staurants, and robots for social companionship. 

• Enabling the most challenging application, namely 
inside homes, the most unstructured and unpredi-
ctable environments.

HUMAN-ROBOT INTEGRATION: 
BIONICS AND BIOHYBRID RO-
BOTICS

If robots until the early 2000s were predominantly 
of the classical industrial type—accurate, rigid, and 
heavy—and in the first decades of the new century, 
cobots took center stage—robots designed for safe 

collaboration and interaction with humans—the futu-
re will see robotic technologies becoming increasin-
gly integrated with human beings. The integration of 
artificial and biological components will occur at all 
levels: physical connections between human and ro-
botic bodies (such as prostheses, exoskeletons, and 
supernumerary limbs), as well as direct neural-syn-
thetic signal interfaces in both efferent and afferent 
directions. These two intelligent systems—humans 
with their biological intelligence and robots with AI—

will attain augmented capabilities unattainable by ei-
ther system alone.

A paradigm for these future developments emerges 
from progress in rehabilitation robotics, where a new 
generation of prostheses, exoskeletons, and super-
numerary limbs was developed—directly interfacing 
with the human body and neural systems to help pa-

Figure 6: Short-term and long-term challenges in design and deployment of robots meant to interact with humans.
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robotic embodiments, potentially redefining human 
identity and agency. This convergence of technologi-
cal and humanistic inquiry gives rise to new scientific 
questions dedicated to exploring the profound impli-
cations of human-machine coalescence, with an im-
mense potential for the development of new personal 
robotics assistants.

ROBOT BODYWARE

Several advancements in core robotic technolo-
gies, i.e. materials, sensors, actuators, energy sto-
rage, computing devices, are needed to obtain and 
turn into commercial products robots capable of inte-
racting with unfamiliar, unpredictable and even harsh 
environments and collaborating safely and effectively 
with humans. In advancing these technologies the in-
corporation of new embedded functionalities or pro-
perties into the body/structure of the robot should 

tients perceive artificial parts as natural extensions 
of their own bodies. Cutting-edge technologies for 
surface, intramuscular, and intraneural high-densi-
ty signal pickup and stimulation, along with cortical 
interfaces equipped with implantable devices contai-
ning thousands of neural sensors the size of a hair, 
are unlocking new possibilities for unprecedented 
advancements. Meanwhile, artificial 
musculoskeletal structures designed 
in alignment with ecological models 
of physical interaction—mirroring the 
environments our brains are naturally 
trained to navigate—are fostering the 
development of sensory-motor con-
tingencies that closely resemble those 
found in nature.

It can be envisioned that the near fu-
ture will see this paradigm pushed 
even further. As robots become in-
creasingly capable of autonomous le-
arning and replacing humans in repe-
titive tasks, a crucial frontier emerges 
in high-responsibility, one-off activities 
requiring human expertise and adap-
tability. In unknown and extremely un-
predictable environments (such as our 
households), where neither humans 
nor robots alone can perform adequa-
tely, a new paradigm of human-robot 
symbiosis must be established. Mo-
ving far beyond traditional teleoperation, this vision 
of avatars as “whole-body prostheses” aims for se-
amless integration where humans and machines form 
unified symbionts, amplifying each other’s cognitive 
and physical capabilities. Achieving this requires 
groundbreaking advancements not only in robotics 
and neural interfaces but also in neuroscience and 
philosophy, to unravel the deep connection betwe-
en mind, body, and environment. Understanding the 
foundational elements of a shared cognitive and per-
ceptual “language” between human and machine is 
essential for creating an immersive and empowering 
symbiotic relationship. Moreover, this shift raises new 
psychophysiological and ethical questions, as indi-
viduals experience out-of-body interactions through 

Figure 7: Humanoids and other platforms will benefit from the 
integration of new core robotic technologies to be developed 
over the next decades, including neuromorphic chips, tactile 
and solar skins, artificial muscles, soft batteries for energy 
storage.
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ments and applications to respond to varying market 
demands, and affordability so that mature componen-
ts can be integrated in a cost-efficient manufacturing 
process. These factors collectively ensure that the ro-
bot systems built from these technologies provide a 
return on investment (ROI).

Europe needs to engage in the very ambitious and 
long-lasting race for General Humanoid Robots, star-
ted today mainly in the US and China. Several cut-
ting-edge prototypes of humanoids on wheels and on 
legs exist in Europe today, still being on par or even 
surpassing the competition. However, larger consortia 
between research and industry, including suppliers of 
components, need to be built quickly to keep up with 
the increased pace in international humanoids robo-
tics. While torque-controlled, compliant robots deve-
loped in Europe have set the standard in interactive 
robotics over the last two decades, we need to look 
into new technologies, such high-efficiency actuators 
and combine them with new concepts of mechanical 
and electrical energy recuperation and storage, if hu-
manoids robots are to do hard work continuously for 

be a guiding principle, along with the environmental 
sustainability of employed materials. The challenge 
is to design new classes of robotic components and 
systems (e.g., actuators/motors, sensors, structural 
parts, energy storage/management, etc.) that featu-
re embedded characteristics such as resistance to 
challenging environments (space, underwater, ra-
dioactive, etc.), self-healing capabilities, biodegra-
dability, and the capacity to recover and/or harvest 
energy from renewable sources. This requires careful 
consideration of the interplay between hardware and 
software, to find new strategies to co-design robot 
control and morphology. This will likely leverage on 
novel manufacturing and material processing tech-
nologies based on additive manufacturing and novel 
printing technologies.   

For core robotic technologies to be successfully 
commercialized they cannot rely on expensive and 
hard-to-manufacture components, they must be ro-
bust, scalable, and affordable. Robustness ensures 
reliability and durability in various environments, sca-
lability allows for adaptation to different robot embodi-

Figure 8 Summary of 
short-term and long-term 
research goals for new 
robotic technologies and 
applications. 
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self-healing tactile skins, with high spatial resolution 
and force direction sensing to allow effective inte-
raction with objects as well as safe interaction with 
humans. Edge AI systems to process tactile sensing 
data locally at the point of contact will help reduce 
the quantity of data to be processed by the central 
processing unit. 

Current trends bet on soft motors and sensors, 
made of deformable, at times biodegradable mate-
rials and flexible electronics. The most mature tech-
nologies in soft robotics currently include fluidic and 
pneumatic actuation, electroactive polymers, shape 
memory alloys/polymers and the newly introduced 
electrostatic electro-hydraulic systems. Fluidic actua-
ted soft robots can be used in simple grippers that 
can be applied in biomedical fields, for example for 
endoscopes, and in specific industries such as food 
and agriculture. Yet, current soft robots fall short of 
providing the strength and speed requirements to 
control full body robots capable of multi-purpose 
tasks. Also, design tools, material models and pro-
duction technologies still require improvement to 
possibly reach higher TRL and subsequent transition 
from lab to market. The future likely lies in either de-
signs that combine a rigid or semi-rigid skeleton with 
these new classes of soft actuators and materials, or 
any combination thereof.

New sensors that can be integrated into robots 
include ultra-low latency vision sensors, ultra-wide 
band localization, RF-sensing technologies, 3D force 
sensors, proximity sensing, sensors for human phy-
siology and wearable sensors. Neuromorphic com-
puting of spiking, event driven signals is expected 
to overcome classic computing architectures and 
communication theory limits, to increase performance 
and energy efficiency of robot electronics under the 
continuously increasing demand for computation and 
communication power.

Improved energy efficiency of onboard computa-
tion is needed to increase autonomy and operational 
life. For humanoids in particular this may require ha-
ving distributed power generation along the body of 
the robot, instead of a backpack, which in turn will re-

many hours. Humanoids will need to be fail safe, i.e. 
legged robots need to fall over only very rarely and 
then survive the fall and not harm people in any case - 
a huge challenge towards reliability and safety of the 
entire system. Moreover, while most humanoids set 
the focus on legs and walking today, Europe’s exper-
tise in hands needs to be leveraged and extended, as 
manipulation is a challenge at least as big as locomo-
tion and breakthroughs are still to come in this field. 

More versatile grippers to tackle grasping and 
manipulation of delicate, deformable objects such as 
fruits, vegetables, garments can be obtained throu-
gh novel designs, by co-designing grippers and their 
software, and with the addition of 3D tactile sensors. 
Remote control stations, supported by 5G/6G high 
bandwidth communication, can allow operators to 
control a robotic avatar over any distance with fe-
edback of interaction forces. Steps can be taken 
towards new modular components with standard pro-
tocols that autoconfigure as part of a bigger complex 
robotics system like it is now the case for computer 
add-ons. Flying platforms can be equipped with ro-
botic arms and grippers for aerial manipulation, with 
increased force and enhanced manipulation capabili-
ties, to be used for inspection and maintenance of bri-
dges, power lines, and high-rise buildings. Swimming 
and amphibious robots, which today are less advan-
ced than legged and winged ones, can be improved 
and be applied for inspection of fish farms, submari-
ne cables, and underwater platforms. Moreover, mor-
phing robots will adapt to different environments and 
tasks. A breakthrough towards real-world applications 
in legged humanoids can be expected.

If robots are to approximate the versatility of living 
beings in facing tasks and environments, they need to 
replace at least some of their current electromechani-
cs actuators with artificial muscles that have sufficient 
power output, are modular and self-healing. Biohy-
brid robots composed of a symbiosis between living 
tissues and cells (e.g. muscles) and artificial materials 
(e.g. prosthetic hand and exoskeletons) are already 
appearing today, and will be growing fast as 3D bio-
printing techniques become more and more establi-
shed. There will also be a need for flexible, robust, 
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quire novel materials science contribution. Ultimately, 
improved energy efficiency can be achieved through 
morphological computation, i.e. designing the robot 
soft body and generally the intrinsic body dynamics 
so that its shape and modes of deformation constrain 
its movement, reducing the need for computation and 
control of its states.

Some of the bodyware advances which will enable 
robots of the future are:

• New actuators with a high-power output, that are 
modular, redundant, efficient, capable of energy 
recovery, and self-healing

• Decentralized control to delegate portions of pro-
cessing to subparts of the robot to ease modulari-
ty and speed up real-time reflex-like computation;

• Segmenting processors into smaller, specialized 
units, chiplet technology allows for more efficient 
and cost-effective designs; integration of AI ac-
celerators and memory, within a single package, 
enhancing performance and reducing latency;

• Integration of batteries into the mechanical 
structure, possibly in a decentralized and distribu-
ted manner; design of soft batteries, with self-hea-
ling properties, and energy harvesting capabilities;

• Multi-faceted fault tolerance design that offer re-
dundancy in actuation and sensing to enable ro-
bots to degrade gracefully in performance despite 
problems like a missing limb, electronic malfun-
ction, or software error. 

• Co-development of AI & microelectronic archi-
tecture to respect objectives of frugality, autonomy 
(embedded ad hoc architectures) as well as con-
fidentiality.

• Technologies to record and deliver the signals 
from and to the human body, computational ap-
proaches to process them and interpret human in-
tention, new haptic displays for conveying sensory 
feedback in a natural and intuitive way. 

ROBOTS IN THE REAL-WORLD 

The manifold everyday applications for the next gene-
ration of robots require predictable control and explai-
nable behavior which can be guaranteed if robots are 
endowed with reasoning abilities to encode and use 
semantic knowledge, to make inferences about the 
consequences of their actions and to make decisions. 
Significant progress in this direction has been made 
in AI-empowered robotics, with innovation continuing 
wherever data and/or models are available. 

Unfortunately, some of the emerging societal challen-
ges are exactly such that neither models nor data are 
available. Consider for example the most promising 
fields of application of Robotics:

• Healthcare and Aging Population Assistan-
ce (elderly care, including physical support, com-
panionship, remote monitoring; exoskeletons to 
support weaker/aging workers in physically de-
manding tasks; autonomous disinfection robots 
and systems for healthcare logistics); 

• Medical and Surgical Care: overcoming the 
“Robotic divide” that prevents most of the wor-
ld population from the benefits of robot-assisted 
care: e.g. making medical and surgical robots af-
fordable and accessible to everybody, everywhere.  

• Logistics (delivery robots and drones for urban and 
rural applications, warehouse automation and in-
ventory management, port and freight automation); 

• Agriculture and Food Security (precision far-
ming for seeding, planting, and harvesting to ad-
dress labor shortage, monitoring crop health, irri-
gation, pest control, sustainable aquaculture and 
livestock management); 

• Construction and Infrastructure (building and 
maintaining roads, bridges, and pipelines; auto-
nomous 3D printing robots for sustainable con-
struction, inspection and maintenance for aging 
infrastructure to improve safety); 
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• Environmental Sustai-
nability and Circular 
Economy (waste sorting 
and recycling, renewable 
energy management (e.g., 
wind turbine and solar pa-
nel cleaning), monitoring 
and protecting biodiversity 
and natural habitats; 

• Civil security, Disaster 
Response and Clima-
te Resilience (Sear-
ch-and-rescue robots for 
natural and industrial di-
saster scenarios, post-di-
saster infrastructure 
assessment and repair, fi-
refighting, flood response, 
nuclear disaster, climate 
change monitoring and pol-
lution containment); 

• Security and Defense 
(law enforcement, border 
patrol, surveillance, drones for security monitoring 
and disaster relief, counter-terrorism, bomb dispo-
sal and reconnaissance); 

• Space Exploration and Industrialization (Lu-
nar and Martian exploration, autonomous rovers, 
habitat construction, maintenance of satellites and 
space stations mining and resource extraction for 
sustainable space industrialization); 

• Underwater Exploration and Industrializa-
tion: While surface resources are finite and increa-
singly depleted, undersea resources remain largely 
untapped because of technological and environ-
mental challenges. Polymetallic nodules are rich 
in precious metals and minerals, seafloor massive 
sulfides, rare earth elements deposits, methane hy-
drates, oil and gas and biotic resources from which 
we will get large part of our new pharmaceuticals. 
 
 

 
 

• Industrial production and Manufacturing: 
while this field is the traditional playground for ro-
boticists, there are still plenty of processes that 
could be improved by innovation in robotics, from 
logistics to lean manufacturing, from workers’ er-
gonomics (physical and cognitive) to critical ope-
rations in harmful environments for humans, from 
new sectors like pharma and the food industry to 
artisan-based settings (where robotics is funda-
mental to support the digital revolutions)   

These seemingly disparate applications really have much 
in common. Indeed, in most of these examples, the en-
vironment is totally or largely unpredictable, and neither 
mathematical models nor data are currently available to 
learn from. Novel strategies are hence needed to tackle 
such challenges, and new abilities are essential:

Figure 9: Robotics and AI impact.
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1. Navigate uncertainty: Develop systems that re-
liably function in complex, unpredictable and chan-
ging environments, without extensive historical data;

2. Reduce data dependency: Create adaptive al-
gorithms capable of functioning with minimal data 
and generalizing from limited examples;

3. Active Perception: plan actions to look for mis-
sing data, by dynamically trading off goal attainment 
with information gathering, privileging e.g. innovation 
in data collection until enough are available to go for 
the task. 

These applications share also the essential need of 
being “provably” safe, i.e. they must be tested and 
validated in all application domains. This is an extre-
mely challenging task that is currently solved, e.g. for 
non-autonomous medical robotics, by validating the 
system for each specific anatomic district. A general 
purpose robot must handle each environment and its 
variants in a safe manner.    

Any usage of robots in direct interaction with humans 
requires finding an intelligent way to combine mo-
del-based AI systems with deep learning algorithms, 
to mitigate potential risks such as misinterpretation. 
This requires defining in which situations misinterpre-
tation can be accepted, because it poses no safety 
issues, and situations where we need instead that the 
machine really understands what happens, to assess 

it correctly, to avoid dangerous consequences.

Many future applications – from autonomous vehicles 
to prostheses and exoskeletons in the medical field – 
imply shared-control systems where humans delega-
te part of the decision-making and control functions 
to artificial agents. This creates the additional chal-
lenge of how to ascribe responsibility for failures and 
potential damage. A clear regulatory and ethical 
framework is needed, one with human needs and 
values firmly at its centre.

There is a fundamental need for interdisciplinarity 
at all levels from research to product design and de-
ployment: Robotics cannot be designed by engineers 
and manufacturers alone anymore. The design and 
deployment of robots intended for direct human inte-
raction and integration must be guided at every stage 
by expertise in psychology, ethics, law, and econo-
mics in order to ensure acceptability and economic 
viability in the market.

European institutions should weigh in with meaningful 
regulations to enforce the principle of human-cente-
red robotics, as they have already done concerning 
the use and exploitation of personal data and the de-
ployment of AI systems. 
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CLOSING WORDS

Robotics has the potential to contribute to many of 
the United Nations’ industry and environment-related 
Sustainable Development Goals. To achieve this vi-
sion, sustained investments in fundamental research 
and technology transfer, interdisciplinary collabora-
tion and close interaction between academia and in-
dustry are required. Europe has a vantage position in 
robotics, and it will be crucial that it retains and stren-
gthens the whole value chain, from design to manu-
facturing and deployment, with a balanced approach 
to AI development that requires investing not only in 
algorithms, but also in the ecosystems in which they 
will operate and in the underlying technologies. 

Deployment of AI-powered robotics at large has be-
come a more tangible target, possibly foreseeable 
in the next decade. Major hurdles on the road inclu-
de ensuring understandability and controllability for 
safe deployment and usage and achieving scalable, 
cost-effective solutions to support autonomy and re-
silience. Further research and technological develop-
ment is needed to improve system performance and 
fully exploit their potential.

Technological development must be accompanied 
by research on the social, psychological and legal 
dimensions of the relationship between humans and 
robots, to understand how humans can develop trust 
while avoiding excessive trust in robots, and how at-
titudes to robots change in time and across different 
cultures. This will ensure that future advancements 
in AI-powered robotics work in the interest of su-
stainable development, equality and social justice. 
Most importantly, sustainability should be included in 
developing robot technologies, considering life cycle 
extension, circularity, resource conservation and usa-
ge, ethics, and environmental justice to have a positi-
ve impact on the UN SDGs.

Any disruptive technology has an economic impact 
only if and when it is properly commercialized. In this 
respect Europe must strengthen its technology tran-
sfer programs, such as the EIC Transition and Acce-
leration programs, to support the transition from labo-
ratory prototypes to commercial products, and foster 
the creation of more innovation ecosystems, capable 
of addressing the needs of deep tech entrepreneurs. 
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ROBOTS AND SUSTAINABLE 
DEVELOPMENT 
The next generation of AI-powered robots can help 
tackle key challenges faced by our societies:

An aging population: the need for assistance to the 
elderly and disabled in homes, or the need for physi-
cal and cognitive rehabilitation after incidents and di-
sease, will greatly increase in the next decades, with 
simply not enough human caregivers.

Humanitarian responses during natural and man-made 
disasters that are predicted to become more frequent 
because of global warming, pollution and internatio-
nal crises. Robots will be increasingly needed for se-
arch and rescue, or for environmental remediation and 
decommissioning of industrial sites, including nuclear 
plants, and inspection of infrastructures after the disa-
ster. As of today, robot-assisted surgical care covers 
less than 1% of all surgical interventions worldwide, de-
priving the vast majority of the population of the benefits 
of robot-assisted procedures. Affordable and accessi-
ble robot-assisted surgical and medical care is already 
scarce in Europe and will be only worse in the future.

The transition towards sustainable growth and a cir-
cular economy: robots can contribute to economic 
growth by increasing productivity in sectors that 
have not been automated so far, such as the textile 
or food industry, high-mix low-volume manufacturing, 
and maintenance of the European industrial and civil 
aging infrastructures. At the same time they can ad-
dress the circular economy’s increasing need to sort, 
recycle, and recover products and materials and keep 
them in the production cycle, including the handling 
of electronic components, batteries and toxic mate-
rials that should not be performed by humans.

Climate change mitigation: robots for environmental 
monitoring can contribute to a more precise asses-
sment of the effects of climate change. 
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From automatic translation to image recognition, from 
systems mastering complex board games to Chat-
GPT and the other language models, deep learning 
has achieved a lot in the last decade, and expectations 
on future developments of AI could not be higher.

Robotics has greatly benefitted from advancements 
in machine learning: for example, locomotion in leg-
ged robots has advanced greatly thanks to reinforce-
ment learning, that allows to define a high-level target 
such as the speed of locomotion or a destination wi-
thout a full mathematical description of the problem. 
Thanks to the advancements in deep learning, driver-
less cars are being tested as commercial service in 
major cities. Robot simulators have advanced thanks 
to deep reinforcement learning, which allows explo-
ring policies with different environmental conditions 
in a reasonable amount of time before trying them on 
the actual robot.

But unlike language models and image recognition 
algorithms that only deal with bits, embodied AI po-
ses specific challenges. Robots cannot rely on huge 
datasets that can be digested in relatively short times. 
Datasets themselves based on physical interactions 
(locomotion on different terrains or grasping of va-
rious objects) are simply not available and cannot be 
quickly assembled: having robots execute tasks in the 
real world takes time, and risks damaging the robot or 
its environment when attempts go wrong. A training 
dataset for flying robots, for example, would need to 
be impossibly huge, since drones can fly at vastly dif-
ferent altitudes and tilting positions with respect to 
the ground. The use of simulators is of great help, but 
for many tasks sim-to-real transfer is still a challenge.

Another crucial difference with non-embodied AI is 
that robots often perform safety-critical applications, 
and safety agencies would not approve a robot powe-
red by an AI without enough transparency on when 
and why it may fail.

For this reason, AI-powered robotics will most likely 
include deep learning in combination with models that 
incorporate fundamental knowledge about the world 
and use it to guide and constrain the use of learned 
policies. Similarly, the development of AI-powered ro-
bots must go hand-in-hand with the development of 
testing tools that must be as advanced as the robots 
themselves.

Ultimately, because no data set or simulation can live 
up to the complexity of real-world physical interaction, 
robots will require lifelong learning and transferability 
of knowledge across tasks, across robot bodies and 
across environments, as well as between humans and 
robots. Research will need to focus on understan-
ding what to transfer (identifying relevant knowledge 
about environments, objects, and tasks constraints); 
how to transfer (formalizing prior knowledge on robot 
bodies and sensors, kinematics and dynamics, and 
for a given task/ environment/body find feasible sets 
of motor commands); and when to transfer (learning 
to recognize similarities across environment, objects, 
and tasks constraints). 

AI AND  
ROBOTICS 
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Future robots be they humanoids, drones, legged 
robots, manipulators, or entirely new soft robots are 
expected to operate in much closer contact with hu-
mans, collaborating and interacting with them in ho-
mes and offices as well as in public spaces. Ultima-
tely, the vision of AI-powered robotics is to enable 
humans and robots to share spaces and tasks, de-
ciding and acting together, while preserving humans’ 
privacy and autonomy. This creates several new chal-

lenges. On the technical side, we need to devise and 
build cognitive and interactive abilities that allow per-
tinent, transparent, and legible behaviours in robots, a 
necessary premise to ensure that they can be trusted 
to work in collaboration with humans. On the safety 
side, we need to evolve current safety standards so 
that they account for the use of robots not only in 
private, controlled spaces but also in public, crowded 
ones: robots must be able to account for the hetero-
geneity of pedestrians, the dynamics of crowds, for 
social norms, and for real people’s disorderly and at 
times mischievous behavior. 

Many future use cases – from autonomous vehicles 
to prostheses and exoskeletons in the medical field 
– imply shared-control systems where humans de-
legate part of the decision-making and control fun-
ctions to artificial agents. This creates the additional 
challenge of how to ascribe responsibility for failures 
and potential damage. A clear regulatory and ethical 
framework is needed, one with human needs and va-
lues firmly at its centre.

It is only through tight coordination with human-cen-
tered disciplines such as ethics, psychology, social 
sciences, that robotics can deal with the social, so-
cietal and ethical issues related to the use of autono-
mous machines in professional, public and domestic 
environments.

HUMAN-CENTERED   
ROBOTICS 
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Robotic technologies are increasingly integrated with 
human beings. To describe the meaning of integra-
tion, consider two simple examples: robotic prosthe-
ses, such as hand prosthetics, and surgical robots 
controlled by surgeons. In both scenarios, human 
capabilities are enhanced: an amputee regains hand 
functionality, and a surgeon operates with higher dex-
terity through minimally invasive procedures. In both 
cases, the artificial system does not operate autono-
mously and requires an interface to integrate with the 
human user. In both cases, however, many services 
can be provided autonomously by the artificial part of 
the system. This is precisely our vision: the integration 
of two intelligent systems, humans, with their biologi-
cal intelligence, and robots with AI to achieve aug-
mented capabilities unattainable by humans alone. 

We are moving toward a world where robots and ar-
tificial intelligence will reach increasingly advanced 
performance levels. To avoid being left behind in sha-
ping the future society, a society of humans, robots, 
and AI, we must synergize with artificial systems, en-
suring humans retain a central role. A crucial role, in-
deed, akin to the “smart keys” of modern cars that de-
activate the overall operative system of the car when 
the key is absent. When referring to augmentative 
robotics, we are referring to wearable robotics, su-
pernumerary limbs and avatars, and to all complex in-
tegrated human-robot systems where humans always 
maintain control and awareness of the task.

Examples of integration currently yielding significant 
results are primarily in healthcare applications, such 
as robotic prostheses, supernumerary limbs, or surgi-
cal robots. In these cases, the presence of humans is 
non-negotiable, as the decisions to make are crucially 
related to people’s health and safety. 

While today’s most impactful applications are medi-
cal, we must prepare for a future where these inte-
grative technologies will be employed pervasively in 
other fields. For example, supernumerary limbs and 
avatars can be used in logistics for object manipula-
tion up to space exploration, where the first few hu-
mans traveling to Mars will require additional arms to 
build habitable capsules. We want to prepare for an 
era where humans control multiple artificial and robo-
tic systems simply as their extensions, just like their 
eyeglasses or their smartphones, but with an ability to 
act in the physical environment. 

HUMAN-ROBOT 
INTEGRATION FOR BODILY 
INTELLIGENCE 
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Significant progress has been made in robotic and 
AI solutions, with innovation continuing wherever data 
and/or models are available. Unfortunately, some of 
society’s emerging challenges are exactly such that 
neither models nor data are available.

What are the most urgent and promising fields of ap-
plication or Robotics and AI and what do they have in 
common? 

Healthcare and Aging Population Assistance, Agri-
culture and Food Security, Construction and Infra-
structure, Environmental Sustainability and Circular 
Economy, Disaster Re-
sponse and Climate Re-
silience, Supply Chain 
Automation, Security and 
Defense, Space Explora-
tion and Industrialization 
Underwater Exploration 
and Industrialization: in 
common among these 
apparently disparate ap-
plications is that in most 
cases the environment is 
totally or largely unpredi-
ctable, and neither mathe-
matical models nor data 
are available to learn from. 

Novel strategies are ne-
eded to tackle these 
challenges. To overcome 
them, it is essential to:

1. Navigate uncertainty: Develop systems that re-
liably function in unpredictable and complex environ-
ments, even without extensive historical data.

2. Reduce data dependency: Create adaptive al-
gorithms capable of functioning with minimal data or 
generalizing from limited examples.

3. Active Perception: plan actions by dynamically 
trading off goal attainment with information gathering, 
privileging innovation in data collection until enough 
are available to go for the task.

ROBOTS IN THE WILD: 
TACKLING THE REAL  
WORLD CHALLENGE 
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Deep learning, large-language models, and other AI technologies have 
gone from one breakthrough to the other. As a result, we are witnessing 
growing excitement in robotics at the prospect of leveraging the poten-
tial of AI to tackle some of the outstanding barriers to the full deployment 
of robots in our daily lives. However, action and sensing in the physical 
world pose greater and different challenges than analysing data in iso-
lation. As the development and application of AI in robotic products ad-
vances, it is important to reflect on which technologies, among the vast 
array of network architectures and learning models now available in the 
AI field, are most likely to be successfully applied to robots; how they 
can be adapted to specific robot designs, tasks, environments; which 
challenges must be overcome. This article offers an assessment of what 
AI for robotics has achieved since the 1990s and proposes a short- and 
medium-term research roadmap listing challenges and promises. The-
se range from keeping up-to-date large datasets, representatives of a 
diversity of tasks robots may have to perform, and of environments they 
may encounter, to designing AI algorithms tailored specifically to roboti-
cs problems but generic enough to apply to a wide range of applications 
and transfer easily to a variety of robotic platforms. We close on what 
we view as the primary long term challenges, that is, to design robots 
capable of lifelong learning, while guaranteeing safe deployment and 
usage, and sustainable computational costs.
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1. INTRODUCTION
The last decade has witnessed impressive advance-
ments in the development and practical application 
of Artificial Intelligence (AI) technologies, in particu-
lar for systems based on Deep Learning (DL) over 
multi-layer artificial neural networks (ANNs). Though 
ANNs are not recent concepts, several factors have 
contributed to a fast-paced acceleration in their per-
formance and scalability. On one side, computing pla-
tforms, such as Graphical Processing Units (GPUs), 
have become available, offering increased computa-
tional power and allowing to create “deeper” networ-
ks (i.e. with more hidden layers). On the other side, 
the exponential growth of multimodal, digital informa-
tion available on the Internet has made vast amounts 
of data easily available for the creation of training and 
test datasets. 

The first demonstration of the potential of these te-
chnologies came in the early 2010s, when deep 
networks started overcoming previous systems in vi-
sual recognition challenges1. Since then, there have 
been important applications of these systems on se-
veral different computational tasks. 

Great expectations currently surround the applica-
tions of new AI systems (including ANNs, DL and 
LLMs) to robotics. Once again, this is not a novel 
concept, because learning algorithms have been 
used to control robots for decades. But there is hope 
that the current fast-paced scaling-up of AI’s perfor-
mances may translate into a similar scaling-up of ro-
botic capabilities and help solve some long standing 
challenges that have so far limited robots’ autonomy 
in challenging environments or their capability to in-
teract effectively and safely with humans. For exam-
ple, the classic control and state estimation methods 
for robots, that were developed for industrial appli-
cations in controlled environments, struggle to adapt 
to the high complexity and intrinsic unpredictability of 
outdoor natural environments, or even to the diver-
sity of objects that can be encountered in a typical 
home. It is tempting to expect that advancements on 
these problems will mirror what happened for Go – a 
boardgame that was famously impossible for classic 

computer programs to master mathematically. Deep 
Learning came and vastly surpassed human abilities, 
albeit after playing billions of games with itself. 

However, we cannot expect that what worked so 
well for perfect information games, which are purely 
data-based, software-level tasks, such as image re-
cognition or text generation, can be applied with the 
same success to sensing, planning, control, and na-
vigation for physical machines. Action and sensing in 
the physical world pose greater and different challen-
ges than playing games: the state space is bigger, 
training data are not so easily available and cannot 
be easily generated, and safety and reliability requi-
rements are higher. It is then paramount to identify 
which technologies, among the vast array of network 
architectures and learning models now available in 
the AI field, can be successfully applied to robots and 
which cannot; how they can be adapted to specific 
robot designs, tasks, environments; which challenges 
must be overcome. 

2. A BRIEF HISTORICAL REVIEW
Allowing robots to operate autonomously in novel si-
tuations and to approximate the dexterity and agility of 
living organisms have been key challenges for roboti-
cs since at least the 1960s2 3 4. For several decades, 
robotics researchers have been experimenting with 
neural networks and machine learning as a potential 
solution to those challenges, and there is now a si-
zable literature on how to leverage these techniques 
to tackle robotics problems that had previously pro-
ven hard to solve. These studies have provided insi-
ght into which styles of machine learning are most su-
itable for robots, and which tasks are more amenable 
to be learned rather than formally programmed. 

Overall, two principal styles of machine learning have 
been employed in robotics since the 1990s. On one 
side there is a family of algorithms that allow robots 
to learn from expert data, typically provided by a hu-
man demonstrator who performs the target action 
while their movement is captured by visual or motion 
sensors. Called alternatively Programming by De-
monstration, Learning from Demonstration (LfD) or 
Imitation Learning, this approach has proved appli-
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cable in tasks ranging from grasping to manipulation 
of complex objects5 6 7. LfD algorithms could produce 
impressive results, such as catching objects in flight 
or control complex flying manoeuvres8 9, while relying 
on very small datasets. The main limitation of LfD has 
historically been the intrinsic need to have a human 
operator with a good knowledge of the task available 
for training the robot, often across many training ses-
sions. To address these challenges, current efforts are 
directed to learning from non-experts or suboptimal 
demonstrations, or from large collections of human 
and robot actions10 11 12. Other approaches, such as 
active learning13, one-shot and behavioral imitation14 

15 or behavioral cloning16, have also been proposed 
as a way to improve the efficiency of LfD: these te-
chniques allow the robot to query the expert for de-
monstrations only when required, to learn a complete 
behavior from a single demonstration, or to start by 
acquiring experience in a self-supervised fashion and 
then use this experience to develop a model which 
is then used to facilitate learning of particular task by 
observing an expert. All of these have been shown to 
require fewer post-demonstration environment inte-
ractions than other techniques. 

The other type of learning algorithms enables robo-
tic systems to learn through trial and error without 
a prior formalization of what constitutes the correct 
control policy. Best exemplified by reinforcement le-
arning (RL)17, this method typically relies extensively 
on computer simulations of the robots and its envi-
ronment to create enough learning cycles and learn 
a robust enough policy before testing it on the actual 
robot. Use of RL in robotics was hindered, for a long 
time, by the exploration phase, which, if not properly 
bounded, can become too computationally and time 
intensive and its inability to easily scale to high di-
mensions. Recent advances leverage the increasing 
effectiveness of deep-learning and visually-realistic 
physics-based simulation, achieving notable success 
in applications such as locomotion for legged ro-
bots – both quadrupeds and humanoids – as well as 
flying robots18 19 20. These methods are limited in that 
training must be conducted initially in simulation, far 
from the complexity of the real world, and the transfer 
from sim-to-real remains an issue21. In addition, RL 

success depends on a good prior knowledge of how 
to define an effective reward metric and assess the 
robot’s performance against it. 

Some of these challenges can be resolved when using 
LfD and RL in combination to leverage the strength of 
both techniques while mitigating their limitations. LfD 
can be used, for example, to reduce the search space 
in RL by bootstrapping it with good examples22, re-
ducing training time of large models23, or to infer the 
reward and the optimal control policy simultaneously, 
a technique known as Inverse RL24. 

3. POTENTIAL FOR NOVEL 
APPLICATIONS AND 
COMMERCIAL DEPLOYMENTS 
Many advances initiated in academic research have 
found their way to commercial applications. AI powe-
red robots that can pick and sort packages of various 
sizes are regularly deployed in e-commerce warehou-
ses. Learning enables online adaptation in tasks like 
pick-and-place on assembly lines, which were once ri-
gidly pre-programmed. Robots can now adjust trajec-
tories if an object is misplaced, or its shape or weight 
is unexpected. Autonomous cars, which started in the 
early 2000s, are now commercially deployed – ran-
ging from partial autonomy in most models currently 
on the market to pilots of full autonomy underway, in 
limited situations, in several cities. 

While AI is now pervasive in all areas of robotics, an 
area of application of particular interest is the field 
of soft robotics, where the deformable, continuum 
nature of robot bodies and their complex interaction 
with environments makes the processing of sensor 
data, state estimation, and control particularly chal-
lenging. Soft robotics is regarded as one of the many 
promising areas in robotics. Its natural compliance 
may ease the usage of robots in areas requiring direct 
interaction with humans and address global issues 
through biodegradable solutions. AI may offer an al-
ternative to traditional control methods that cannot be 
used readily to control soft robotics and process their 
complex and heterogeneous sensor data stream25, 
thereby easing usage and deployment of this new te-
chnology. A notable example is the recent application 
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of convolutional neural networks to interpret the weal-
th of data streaming from a soft glove’s artificial skin, 
enabling real-time recognition and control of grasps 
on objects26. 

4. SHORT- AND MEDIUM-TERM 
CHALLENGES
Scientists have only begun to scratch the surface of 
the potential of RL, LfD, and other flavors of AI and 
machine learning for robots. We next point out a list 
of short-term and long-term challenges, by increasing 
level of complexity, all of which form the corpus of 
current ongoing research directions (see Figure 1).

FIGURE 1: Short-term and long-term challenges for further endorsement of AI in robotics, order by increasing level of complexity. Note that these challenges 
may not be overcome sequentially. Rather, research proceeds in parallel along many of these directions.
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Creating and maintaining representative data-
sets. An intrinsic limitation in robot learning as com-
pared to other AI application domains is that there are 
no ready-to-use and easily available large datasets 
that can be used to train ANNs on sensing and con-
trol tasks, comparable to the vast repertoire of images 
and text that could be downloaded from the Internet 
and used to train image recognition or text generation 
algorithms. Generating ex novo enough iterations of a 
robotic task to train an ANN can be exceedingly costly 
and time consuming, or simply impossible. Too many 
robots would be destroyed during failed attempts at a 
task, and in some cases (such as autonomous flying 
robots) this would create risks for humans. 

For some tasks, reference databases can indeed be 
created but require an organized and multi-centric 
effort. For example, in the case of visual imitation le-
arning, attempts are being made at creating an ana-
logue of ImageNet for grasping and manipulation, 
such as the Dexterity Network (Dex-Net) research 
project that develops code, datasets, and algorithms 
for generating parallel-jaw robot grasps and metrics 
of grasp robustness based on physics for thousands 
of 3D object models, with the aim of training machine 
learning-based methods to plan robot grasps. It sup-
ports researchers in finding robust grasps and trai-
ning neural networks to generate a wealth of similar 
grasping strategies. The platform has allowed to learn 
deep policies to pick objects from a bin containing 
many unfamiliar objects at various orientations, the 
so-called “bin-picking” problem that has long been a 
benchmark challenge in the field27. 

Large datasets are also being created for terrestrial 
navigation tasks, thanks to cars now collecting large 
amounts of images routinely, from professional map-
ping services such as Google Maps to dashcams 
becoming increasingly common on private vehicles. 
These databases are typically available to companies 
on a proprietary basis, but if privacy and IP issues can 
be dealt with, it is foreseeable that some of them can 
become available to researchers. The challenge is 
bigger for aerial navigation, because of the many dif-
ferent perspectives from which a drone can observe 
the same scene, at vastly different altitudes and tilting 

orientations with respect to the ground. 

Beyond visual data, robot learning needs datasets of 
robot actions in the form of trajectories and interaction 
force profiles associated with various tasks. Datasets 
on specific robot bodies and tasks do exist, but they 
are typically too narrow for large-scale machine lear-
ning. Combining datasets from diverse embodimen-
ts and on diverse robotic tasks can be a solution to 
reach the required scale. For example, an effort has 
recently been launched to combine several datasets 
on robotic manipulation, each one based on a speci-
fic robot body and skills and has provided a proof of 
concept that such a combined dataset could be used 
to train a policy for a given task more effectively than 
by using a dataset specific to that task28. 

Possibly the biggest challenges in terms of dataset 
creation are related to close interaction with humans, 
as the complexity and variability of both physical in-
teractions and communication with humans and the 
need for enhanced safety guarantees currently pre-
vents the rapid creation of datasets either through 
real experiments or in simulation. Ethical issues also 
put strict limits on what data can be collected and 
stored about human subjects and how they can be la-
belled, for example, by ensuring that subjects are not 
recognizable, that no sensitive information about them 
can be inferred from the data, or that images of a hu-
man subject cannot be reused in a different context, 
including being used for different training objectives 
than initially specified. An additional complication is 
that robots and humans perceive the world and inte-
ract with it in very different ways: while humans rely 
on multimodal information combining visual, acoustic, 
and haptic information, robots mostly rely on vision or 
on other bands of the electromagnetic spectrum, and 
while they can see more than humans do (including in 
low light or through obstacles) they remain incapable 
of analysing complex visual scenes. 

From simulation to reality. Simulations offer a par-
tial solution when it is not possible to create a large 
enough dataset. Several robotic simulators are avai-
lable to the robotic community (examples include Al-
goryx, Bullet, Gazebo, Isaac Sim, MuJoCo, RoboDK,) 
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and have been used for a long time to test and im-
prove classic model-based control algorithms before 
applying them to real robots. The accuracy of their 
real-time physics-based simulation (the so-called 
physics engines) has greatly improved, also thanks 
to their commercial use in computer gaming. Reliable 
physics-based simulators can now, for example, simu-
late locomotion on complex terrains and manipulation 
on realistic objects in home environments, allowing 
the evaluation and selection of optimal controllers in 
simulation before being downloaded in the real robot. 
The use of simulators reduces the time needed for 
training, requiring only fine-tuning of parameters on 
the real robot. Randomized control policies genera-
ted by a neural network can be run in simulation over 
several thousands of iterations, generating a training 
set from which optimal policies can be learned and 
then transferred to the real world. 

However, overcoming the sim-to-real gap, i.e. the di-
screpancy between the robot’s performance in the 
real world and in the simulated environment, remains 
a challenge. This gap can be the result of multiple fac-
tors: the simulator’s model can be exceedingly sim-
plified with respect to the actual physical robot; the 
variability of the environmental conditions can be too 
large to be captured by a model; the physics simu-
lator can fail to accurately capture the physics of the 
real world, especially when it comes to contact forces 
and deformable surfaces. 

There are many techniques to overcome the sim-to-
real gap. A small amount of data from the real world 
can be collected and used to increase the realism of 
the simulator29. Rapid-Motor Adaptation (RMA) has 
been successfully applied to achieve online real-ti-
me adaptation of quadruped locomotion to changing 
terrains, payloads, wear and tear30. “Curriculum lear-
ning”, where the robot learns gradually more complex 
tasks in gradually more complex environments, has 
also been shown to improve the transfer of policies 
learned in simulation to the real world for legged ro-
bots’ locomotion31. 

Leveraging large generative models for roboti-
cs. Much of the current excitement around AI focuses 

on generative AI, and specifically on Large Language 
Models. They are mostly based on the “transformer” 
deep learning model, which around 2017 emerged 
as an alternative to both recurrent and convolutional 
neural networks, allowing the speedup of learning (in 
particular of textual information) by processing infor-
mation sequences in parallel32. By learning statistical 
relationships in text documents, these systems have 
achieved remarkable efficiency in generating text. Ba-
sed on the same principle, they have been applied to 
diverse problems such as computer coding or com-
putational chemistry. 

LLMs are attractive for robotics on multiple levels. Exi-
sting LLMs can be adapted to support human robot 
interaction based on natural language, essentially ma-
king it easier to control a robot through written or ver-
bal instructions, in any human language, and allowing 
them to respond to humans accordingly. Attempts are 
also being made at using LLMs in robot navigation in 
new and unfamiliar environments, to support seman-
tic guesswork, essentially using their inferences33. 

Another family of generative models are language-vi-
sion models, that are trained on text/image pairs or 
annotated videos found on the Internet, and that can 
be used to generate synthetic images and videos from 
text prompts34. These models can also be applied to 
robotics, for example, to improve object recognition 
in manipulation and navigation tasks, and allow tasks 
to be specified in terms of what can be seen by the 
robot. A new generation of large visual models can be 
purposely built for robotics, trained not (or not exclu-
sively) on text/image pairs from the Internet, but on 
navigation datasets such as those described in the 
previous section, produced by cameras during actual 
navigation in real environments. A first step could be 
learning to generate expectations on domestic spa-
ces, i.e. using datasets of images of homes and offi-
ces or information from sensorised objects to genera-
te reliable predictions on what a robot moving around 
such an environment may encounter. The same ap-
proach could then be extended to terrestrial and ae-
rial navigation, creating models that can understand 
and contextualize visual information and incorporate 
a model of the robot’s own physics and behavior to 
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predict what it will see next. 

The most recent developments in the field are langua-
ge-vision-action models that add action to the equa-
tion. Examples of such models are being proposed, 
trained by fine-tuning vision-language models with 
both Internet-scale visual-language tasks and robo-
tic trajectory data. By expressing the robot actions 
as text tokens and incorporating them into the trai-
ning set together with natural language tokens, these 
models can learn to output robot actions like LLMs 
output text35. Initial results are encouraging, but the 
challenge of feeding such models with suitable data-
sets (see section 2.1), effectively mapping vision to 
action, and providing the system with the reasoning 
capability to correctly anticipate the consequences of 
its actions, will have to be a core research focus for 
several years. Another challenge is to verify the logic 
and feasibility of the plan generated by LLMs, an is-
sue that is well addressed in logic-based planning36. 

Prior knowledge and combining AI with control 
methods. For physical robotics, incorporating prior 
knowledge on both robot and environment dynami-
cs in combination with control methods with provable 
guarantees, is a more sensible way forward than a 
totally bottom-up, knowledge-agnostic approach to 
learning. In aerial robotics, for example, neither lear-
ning nor aerodynamics-based control alone can help 
solve the challenge of approximating the agility of 
birds’ flight: coupling sensing and perception with the 
full body dynamic, allowing a drone to have instant 
reactions in flight and cancel perturbations, or on the 
contrary profit from the wind, efficiently combining 
flapping of wings and gliding (in the case of a winged 
drone) to save energy. These challenges will require 
a combination of learning for building improved aero-
dynamics models with control methods for guarante-
eing flight stability. 

Another reason for combining models and formal 
knowledge with machine learning is that a system only 
based on the latter would be prone to failures that can 
neither be predicted beforehand nor fully explained 
afterward, as exemplified by “hallucinations” observed 
in Large Language Models. Many current deep lear-

ning models are intrinsically non-explainable, a pro-
blem that becomes even more critical when AI is ap-
plied to robots. And because most future robots are 
expected to operate in safety critical scenarios such 
as autonomous navigation or close interaction with 
humans, no regulatory agency would approve their 
use unless their behavior can be predicted, and per-
formance guarantees met – failures must be explai-
ned and corrected which is currently not feasible with 
model-free deep learning. This is a serious limitation 
to almost all applications where harm to humans is 
possible, for example, in the medical field, aeronau-
tics, logistics and transportation, and domestic use. 

AI-powered robots will need models of the actions 
that they are about to do, and these models must be 
explicitly represented in order to reason about the 
consequences. For example, a robot designed to 
work in a chemical lab, whose task is to pour che-
micals into different containers, needs to know what 
happens when an acid is mixed with a base. Whe-
never a human comes into play, the robot needs an 
actual theory of mind modelling what the human may 
do and how the human might interpret the robot’s 
task. This model can quickly become more complica-
ted than the model of the robot itself37. 

Numerous efforts are directed to merge control theory 
and machine learning, proving that this can ultimately 
speed up learning, increase the robustness of the le-
arned model, and enhance its safety38 39. For example, 
a standard machine learning algorithm optimization 
can be modified to encompass penalties for violations 
of Lyapunov stability, or bounded constraints to gua-
rantee estimated plausible values for physical quan-
tities such as stiffness and mass40. In a similar vein, 
training of deep RL can be guaranteed to generate 
stable trajectories41, or be enhanced by incorporating 
reference motions generated through control model, 
covering a broad range of velocities and gaits42, ser-
ving as targets for the RL policy to imitate. Control 
theory and deep learning have also been combined 
to optimize grasps, using DL to find an initial policy 
that is then refined with model-based algorithms, thus 
sizeably speeding up computing43. 
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5. LONG-TERM CHALLENGES 
The most exciting, but also most challenging, long-
term promise of AI for robotics is to enable robots to 
continuously acquire new knowledge, a dream dating 
back the 90’s44. It requires three ingredients, which 
we discuss next. 

Life-long learning: If the goal of robot learning is 
to approximate the way living organisms – humans 
included – learn tasks, then future robots will need 
to be able to acquire new knowledge and learn new 
tasks along their entire operational life, instead of 
relying on an initial training dataset that could never 
prepare them for the complexity and variability of the 
real world. 

Endowing robots with the ability to learn continuously 
poses huge technical and regulatory challenges. Li-
felong learning requires new paradigms based on in-
cremental learning and is able to convert input output 
learning to structured knowledge, combining the 
power of learning with the paradigms of expert sy-
stems. It requires a learning module working around 
the clock on the robot 
in parallel to the con-
trol module enacting 
the policies that were 
already validated. It 
brings along difficult 
questions, such as: 
how do we get some 
assurance about the 
performance of the 
system? How can we 
test the system, pro-
vided we can’t know 
in advance the situa-
tions it will encounter 
and how it will learn 
from them? How do 
we select the things 

the robot can forget to make room for learning new 
things? How do we make sure that whenever it learns 
something new, even minimal, it has not forgotten how 
to do something important that it could do yesterday? 
These problems will need to be investigated in close 
collaboration with neuroscientists and developmental 
psychologists, to understand how humans achieve 
continuous and diverse cognitive development tran-
sitioning from one task to another, how this mechani-
sm can be reproduced in neural networks, and how 
they can be implemented in robots. These problems 
will also translate into major regulatory issues: how 
to check that an evolving system maintains the safety 
and reliability standards requested for market certifi-
cation as its capabilities change with new learning? 

Possibly the main challenge for life-long robot lear-
ning will be to be able to scale up the current learning 
methods. Many robots will not stay the same for their 
whole operational life. After five or eight years of ope-
ration, a robot may have to mount a different gripper, 
or a different motor. The objects it has to manipulate 
and the environment in which it operates may also 

have changed. When 
that happens, the 
acquired knowledge 
that allows the robots 
to pick up and mana-
ge different objects 
may not automatically 
transfer to a slight-
ly modified platform. 
But we currently lack 
good algorithms to 
transfer automatically, 
without retraining or 
human intervention, 
across even small 
changes in the embo-
diment. 

Figure 2: The ability to transfer learning across robot bodies, tasks and environment is 
fundamental for achieving collaborations of different robots on one task). Schematic 
makes use of images generated by Microsoft Bing Creator.
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Transfer learning: Future robots will need to be 
able to transfer what they learn: from one task to 
another, from one environment to another, and from 
one robot to another. Human intelligence relies on the 
ability to apply the knowledge acquired in one domain 
to new domains - thus solving new problems and fa-
cing unexpected situations – and to share knowledge 
among individuals. Similarly, robots need analytic and 
data-driven methods for learning skills from human 
demonstrations, transferring learned skills to novel 
tasks or different robots and environments, transfer-
ring skills learned in simulation to real robots, tran-
sferring learned perception routines between robots. 

There are several open questions that need to be 
solved to reach transferrable robot learning. The first 
one is what to transfer: we need to develop criteria 
to select the learned knowledge about environmen-
ts, objects, tasks constraints that can and should be 
transferred when dealing with new environments, 
objects, and tasks. A second question is how to tran-

sfer: for successful transfer to happen, prior knowled-
ge of robot bodies may often be required, for example 
on sensors, kinematics, actuators, electronic hardwa-
re etc. Finally, we need to know when to transfer, de-
veloping algorithms to recognize similarities across 
environment, objects, tasks constraints, establishing 
if transfer of knowledge is at all possible in every spe-
cific case or if entirely new knowledge and novel lear-
ning cycles are needed. 

6. CLOSING WORDS
Deployment of AI and robotics at large has become 
a more tangible target, possibly foreseeable in the 
next decade. AI has the potential to expand largely 
the capabilities and range of applications of robotics. 
At last, the multi-decade dream of intelligent, capable 
and useful robots is within sight. Major hurdles on the 
road include ensuring understandability and control-
lability for safe deployment and usage and achieving 
scalable, cost-effective solutions to support auto-
nomy and resilience.

Figure 3: Handing a package from a drone to a humanoid robot or single-arm robot manipulator requires to reconcile drastically different perception, from 
different viewpoints and sensors, and distinct robot actions from unimanual to bimanual actions (inspired by 2023 EuROBIN Hackaton). Image generated by 
Microsoft Bing Creator.
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As it faces the overarching challenges of taking robots to complex and 
uncontrolled environments, executing complex and partially unpredi-
ctable tasks while operating autonomously and interacting more closely 
with humans, robotics will need to expand the current scope of planning, 
control, and reasoning techniques and combine them with generative AI 
and learning. This article looks at the main challenges in adapting con-
trol, planning, and reasoning to the next generations of robots. It defines 
a roadmap to move from the current state of the art to goals that can be 
reached in the short and medium term, and to open scientific challenges 
that will keep researchers occupied at least for the next ten to fifteen 
years. Short-term goals include the automation of new working environ-
ments, aerial manipulation, improved teleoperation, improved physics 
engines for simulation and semantic digital twins. Long-term challenges 
include model-based manipulation of deformable objects, model-based 
control of soft robots, new mathematical approaches to control and plan-
ning, long-horizon planning, multi-robot control, advanced reasoning for 
seamless collaboration with humans. 
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1. INTRODUCTION
Planning and controlling the movements of robots 
made of mechanical parts is a cornerstone problem – 
if not the cornerstone problem - of robotics. Industrial 
robotics was born when computer programs were 
first applied to guide the movement of robotic arms, 
mounted over a fixed base, in a tridimensional space. 
Over the years, the scope of control and planning te-
chniques has expanded to include the movements of 
mobile robots that have no fixed base and can navi-
gate an environment while performing tasks within it. 

For both manipulators and mobile robots, the funda-
mental steps to be taken include: 

a) creating a mathematical model of the robot itself, 
including its kinematic and dynamic behavior, and a 
mathematical model of the environment where it is si-
tuated1 

b) finding a trajectory to move the robot from an initial 
configuration to a final, desired configuration, without 
colliding with the environment and respecting all the 
kinematic and dynamic constraints of the robot (mo-
tion planning)2 

c) using actuators and sensors to create the motion 
required by the planned trajectory (control) 

While the first generations of industrial robots were 
bound to follow predetermined trajectories, decades 
of development in motion planning and control have 
now led to robots that can adapt their trajectories in 
real-time, either to compensate for changes in the po-
sition of the object that the robot must handle, or to 
guarantee the safety of human operators in the vicinity 
of the robot3. In mobile robots, research and industrial 
development have led to control policies for wheeled, 
tracked, flying or swimming robot coupled with navi-
gation algorithms that allow those robots to move au-
tonomously in environments for which a precise map 
is available, and even to a certain degree in environ-
ments that they have never encountered before4. In 
certain cases, finding optimal trajectories according 
to user-specified criteria (e.g. length) is possible. Ul-

timately, to approximate the capabilities of living or-
ganisms and to operate without humans’ supervision, 
robots need to be endowed with reasoning abilities 
that allow them to encode and use semantic knowle-
dge to make inferences about the consequences of 
their actions, interpret situations never encountered 
before, and make decisions.

As it faces the overarching challenges of taking ro-
bots to complex and uncontrolled environments, exe-
cuting complex and partially unpredictable tasks while 
operating autonomously and interacting more closely 
with humans, robotics will need to expand the current 
scope of planning, control and reasoning techniques. 
While data-driven techniques and machine learning 
are currently attracting much attention5, there are 
several robotic applications that require predictable 
control and explainable behavior which can only be 
guaranteed using underlying models (of the robot, the 
task, the environment and of humans). And thanks to 
improvements in mathematical methods and compu-
tational technologies, there are still huge margins of 
advancement in model-based methods that do not 
rely primarily on learning. 

The role of control, planning, and reasoning in sha-
ping the future of intelligent robotics in the age of ge-
nerative AI and foundation models, is closely tied to a 
broader philosophical question: do intelligent robots 
need to maintain explicit representations of their ca-
pabilities and bodies to operate effectively in human 
environments and accomplish human-scale tasks? 
Kahneman’s dual-process theory of decision-making 
and intelligence offers a compelling framework for in-
tegrating generative AI with model-based techniques 
in a synergistic manner6. The theory posits two com-
plementary modes of reasoning: System 1, which is 
fast, intuitive, and associative, and System 2, which is 
slower, deliberate, and analytical. In robotics, gene-
rative AI can embody the rapid, adaptive qualities of 
System 1, leveraging large-scale data and multimo-
dal learning to predict actions and generate flexible 
behaviors in real time. Meanwhile, model-based te-
chniques align with System 2, providing structured, 
logical reasoning grounded in explicit representations 
to ensure correctness, safety, and long-term planning.

Chapter 2 - Control, Planning and Reasoning in the era of generative AI

45

euROBIN Strategic Research Agenda

www.eurobin-project.eu



The main goals of the next decade of research in these 
fields will be to exploit the current modelling techni-
ques at the best of their potential, making planning and 
control faster and more robust; to improve modelling 
itself, and expand it to systems that have so far being 
considered intractable, such as soft robotic systems; 
to leverage new hardware and software tools for better 
and faster motion planning; to scale up planning and 
control methods to have multiple robots work colla-
boratively; to advance reasoning abilities in robot and 
combine them with learning and generative AI. 

This article looks at the main challenges in adapting 
control, planning, and reasoning to the next genera-
tions of robots. It defines a roadmap to move from the 
current state of the art to low-hanging fruits that can 
be reached in the short and medium term, to open 
scientific challenges that will keep researchers occu-
pied at least for the next ten to fifteen years of re-

search (see Figure 1).

2. STATE OF THE ART
Six decades of work on industrial robotics and au-
tomation, both in academia and in the robotics indu-
stry, have led to well-established techniques for the 
interconnected problems of modelling (the kinematic 
analysis of the mechanical structure of a robot), mo-
tion planning (the generation of trajectories to take 
the robot from a given initial configuration to a de-
sired final configuration), control (the realization of 
the desired motion by actuators and sensors ) and 
navigation (the ability of a mobile robot to know its 
position inside an environment and use it for planning 
and controlling new trajectories). 

Model-based planning and control for manipulators 
operating in controlled environments and on rigid, 

Figure 1. Summary of short-term and long-term research goals presented in the article. The roadmap is not intended as a temporal sequence, but rather as 
a series of goals with increasing levels of complexity to be researched in parallel. 
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a-priori known objects is solved and extensively de-
ployed in the millions of robots operating in the auto-
motive, chemical, electronic industry. Tridimensional, 
free-space motion planning with high degrees of fre-
edom is fundamentally solved, allowing manipulators 
to work very efficiently in controlled environments 
such as assembly lines, warehouses, and automated 
laboratories7. A key advancement from the last two 
decades was the addition of on-line acquisition and 
elaboration of sensory feedback provided by visual, 
haptic, force/torque, laser sensors, that have allowed 
to develop more intelligent control algorithms for in-
dustrial robots based on principles such as propor-
tional–integral–derivative (PID) control, adaptive con-
trol, tracking control8 9. 

Another essential contribution from research carried 
out in the recent decades has been compliant con-
trol, developed theoretically since the 1980s and 
deployed in the first two decades of the 21st cen-
tury10 11. It allows controlling the energy injected in the 
systems and to allow interaction with humans rather 
than just following trajectories. Compliant control al-
lows going from following trajectories to controlling 
the impedance and the interaction with humans and 
the environments. It has resulted in the development 
of co-bots (>link to HRI article) but has proven impor-
tant also for classical industrial robots12. 

Hierarchical multitasking control has also greatly ad-
vanced at the research level. Control framework now 
exists that can create a priority scale of multiple tasks, 
making sure the tasks with lower priority are fulfilled 
only as long as they don’t interfere with the highest 
priority task13. A humanoid robot could, for example, 
have a main task of manipulating an object, a secon-
dary one of avoiding collisions with the environment 
and another of minimizing the effort. The methodical 
basis for these developments were laid down in the 
1980s and 1990s and has been deployed during the 
last 20 years on humanoids or mobile robots equip-
ped with arms. 

Advancements have also been achieved in controlling 
complex dynamics that happen when the robots do 
not have a stable base attached to the ground, such 

as in the case of free-floating space robots equipped 
with manipulators, such as a satellite that can catch 
another satellite while floating in space and then sta-
bilize the system. Algorithms have been introduced to 
control the center of mass, the momentum to or even 
free-floating robots with arms or in aerial manipula-
tion, with an arm on-board a flying robot14 15 16. 

Teleoperation, e.g. the ability to control a robotic ava-
tar over any distance in a closed loop, feeling the in-
teraction forces and to achieve high-fidelity control, 
is state-of-the-art although not yet deployed on the 
large scale, and has been demonstrated in settings 
such as astronauts on the International Space Station 
controlling robots on the ground despite transmission 
delay and gravity effects17 or deep sea operation of a 
humanoid underwater robot controlled by a human on 
the surface18. 

When it comes to mobile robots, 2-D path planning 
on flat terrains is largely a solved problem, including 
coverage path planning, that is the problem of com-
puting the optimal path and project a collision-free 
trajectory to ensure the robot fully covers an area of 
interest within a certain time19. The problem of cre-
ating a map of a previously unknown environment, 
updating it continuously while keeping track of the ro-
bot’s position in it has been solved by Simultaneous 
Localization and Mapping (SLAM) algorithm, that can 
operate efficiently in unknown cluttered environmen-
ts using either lidars or cameras - or both20 21. Both 
coverage path planning and visual SLAM are succes-
sfully deployed in millions of robotic vacuum cleaners. 

Kinodynamic trajectory optimization and control for 
wheeled in the absence of unexpected events is 
also state-of-the-art, as demonstrated by existing 
small-scale deployments of self-driving cars22. Multi 
Robot motion planning in known environments such 
as warehouses is achieved, at least when one is only 
concerned with the position of the robot and not with 
what is happening with its body23. Many aspects of 
the control of drones, especially quadcopters, have 
been solved and deployed. Autonomous navigation of 
flying robots using GNSS, or environment perception 
in partially denied environments where satellite signal 
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is not available, is achieved. This allows controlling all 
the phases of the flight, including fully autonomous ta-
keoff and landing even in constrained space, such as 
the perching of a flapping-wing robot on a branch24. 
Obstacle detection and avoidance is state of the art, 
both in indoor and benign outdoor environments, as 
long as there is no significant wind, which instead re-
mains an unsolved problem for the control of drones. 

Cognitive robot architectures exist that provide 
structured frameworks for integrating perception, 
reasoning, learning, and action capabilities within 
robotic systems, enabling them to exhibit intelligent, 
goal-oriented behavior. These architectures incorpo-
rate advanced cognitive reasoning mechanisms such 
as prospection, which allows robots to anticipate and 
simulate future scenarios; affordances, which enable 
the robot to perceive actionable possibilities within its 
environment; and attention, which helps prioritize rele-
vant sensory information and tasks. They also include 
self-awareness for monitoring and adapting internal 
states, memory mechanisms like episodic and seman-
tic memory for storing and leveraging past experien-
ces, and situated reasoning for context-aware deci-
sion-making. Examples include the CRAM (Cognitive 
Robot Abstract Machine) architecture, designed to 
facilitate goal-directed tasks in everyday environmen-
ts by using underdetermined plans that resolve into 
specific actions through runtime reasoning25; iSAC, 
that employs a multi-agent system combined with me-
mory subsystems (e.g., sensory egosphere, semantic 
memory) and an internal rehearsal system for action 
simulation and selection26; and ARMAR which focu-
ses on enabling humanoid robots to perform complex 
manipulation tasks in human environments by combi-
ning advanced perception, semantic reasoning, and 
action planning27. These architectures exemplify how 
cognitive frameworks enable robots to adapt to dy-
namic environments, interact with humans, and learn 
from experiences, bridging the gap between symbolic 
reasoning and sensorimotor interactions.

Knowledge representation and reasoning are fun-
damental to solve the robot body motion problem, 
enabling robots to infer and execute appropriate 
actions for complex tasks. This approach involves in-

3. RESEARCH PRIORITIES 
IN THE SHORT TERM AND 
LOW-HANGING FRUITS FOR 
INNOVATION
Applying research results to new industrial do-
mains. Some important improvements in planning, 
control, and navigation would be relatively easy to 
achieve in the short term, as they are based on solu-
tions that have been extensively studied in laborato-
ries in the last decade and would mainly need addi-
tional effort (and adequate funding) to be scaled up, 
validated and commercially deployed. 

A good example is the extension of automation to 
working environments that so far have remained only 
partially automated, such as large-scale research and 
testing laboratories. Laboratory automation with easy 
customization appears especially promising for che-
mistry labs, medical testing, and DNA sequencing. 
These contexts present varying degrees of complexi-
ty, ranging from tasks such as high throughput scre-
ening or quality control that are largely repetitive and 
can be addressed by traditional planning, control and 
programming, to more dynamic R&D setups in less 
structured environments that require novel robotics 
approaches with perception, knowledge representa-
tion, information sharing. Architecture models for the 

tegrating symbolic representations, such as ontolo-
gies and axiomatic knowledge bases, to encapsulate 
information about objects, environments, and actions. 
For example, frameworks like KnowRob28 and CRAM 
use such representations to infer the motion parame-
ters required to achieve desired effects, such as gra-
sping and lifting objects, while avoiding undesirable 
side effects like collisions or spillage. These systems 
combine abstract knowledge (e.g., social conven-
tions or intuitive physics) with contextual information 
from sensors and episodic memories to adapt to dy-
namic and underdetermined scenarios, such as ”set-
ting a table” in varying household environments. By 
leveraging structured reasoning mechanisms, robots 
can not only generate effective motion plans but also 
account for uncertainties and failures, thus enhancing 
reliability in open-ended domains.
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integration of existing solutions in life science labo-
ratories in a plug-and-play fashion have been propo-
sed and can be further developed29. The construction 
industry is another case where robots have a proven 
potential to improve productivity and enhance the sa-
fety of workers, and where new planning and control 
methods can be applied to tasks such as the on-site 
quality check and assembly of parts manufactured of-
f-site. 

For mobile robots, aerial manipulation has made gre-
at advancements and is a reality at the research le-
vel, with drones that can perform manipulation whi-
le flying or after perching to increase dexterity and 
force30; yet, deployment and commercial application 
require further technological development, in particu-
lar on expanding on-board real-time perception and 
planning capabilities to allow effective control of the 
forces exerted by – and felt by – the drone; and policy 
development, since the lack of a clear and consistent 
regulatory framework is currently constraining resear-
ch and development. 

Teleoperation for industrial and service robots is also 
ready for wider application thanks to the development 
of virtual reality and haptic feedback systems and can 
allow the automation of industrial processes (such as 
sanding, grinding, polishing) that are too complex for 
unmanned manipulators but where there is room to 
increase the safety and comfort of human workers, 
by physically removing them from the material being 
manipulated31. 

Physics engines and digital twins as enabling 
technologies. In terms of enabling technologies, 
hardware-accelerated motion planning for high-di-
mensional robots is close to the stage where it can 
be used for faster predictive control. Current motion 
planners can solve realistic and challenging problems 
in hundreds of milliseconds to dozens of seconds 
on consumer CPUs, which is too slow for reactive 
operation in evolving environments and prevents the 
achievement of higher-level autonomy. However, se-
veral strategies to accelerate motion planning have 
been demonstrated, typically combining some paral-
lelisation of computation with hardware acceleration. 

While GPU-based acceleration implies a huge com-
putational cost and introduces latency in communi-
cation, efficient acceleration can also be achieved 
on ordinary CPUs by exploiting some of their native 
features. Motion planning time for manipulators could 
thus be reduced to microseconds, significantly acce-
lerating the movements of industrial arms with more 
than 7 DoFs32. Advancement in on-the-fly motion 
planning would also facilitate the development of so-
cially adequate robots – not able to fully cooperate 
with humans but that can have limited interaction in 
structured environments like hospitals. 

A key area of effort in the short and medium term must 
be the improvement of robotic simulators. These are 
key tools for modelling, motion planning, and control, 
as they allow testing planning and control algorithms 
safely and inexpensively before trying them out in the 
real world and on a real robot. The so-called sim-to-
real gap is currently a limiting factor not only for da-
ta-driven and learning-based approaches, but also 
for model-based planning and control. Increasing the 
fidelity of physics simulators and physics engines is 
crucial to overcome this gap. Thanks in part to huge 
investments from the gaming industry, better physics 
engines and visual rendering of physical interaction 
are now becoming available and can be transferred 
to the robotic domain with relatively easy adaptation 
to obtain robotics-enabling simulations that are com-
putationally lighter, modular, faster, and more resour-
ce-efficient than current ones33. However, for them to 
be used in robotics research it is important that dif-
ferent physics engines can work together by relying 
on unified modelling abstraction and hierarchies. Ad-
ditionally, the needs and the objectives of physics si-
mulation for robotics are very different from those of 
virtual reality and computer gaming, and more work is 
needed to define the ideal trade-offs between fidelity 
of the simulation, computational cost, and usefulness 
in helping define tractable control policies. 

Digital twins go beyond pure simulation and modelling 
by creating a bidirectional interaction between the vir-
tual and the physical. A digital twin can be defined as 
a “a set of virtual information constructs that mimics 
the structure, context, and behavior of a natural, en-
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4. OPEN CHALLENGES FOR A 
LONG-TERM ROADMAP
Model-based manipulation of deformable 
objects.  An open challenge that robotics will need 
to address in the next decade, and most likely exten-
ding well beyond, is how to advance the model-based 
motion planning and control of soft systems. This pro-
blem covers two interrelated but distinct challenges.

The first one is the manipulation of deformable objects, 
that is currently a challenge for industrial robots and 
yet would be crucial for many applications, from me-
dicine to agriculture to the automation of the textile 
and food sectors35. Progress will be needed on the 
hardware side, with the design of new soft grippers 
but also on the modelling, planning and control side. 
While machine learning has a significant potential in 
this regard, it is unlikely that industrial deployment of 
manipulation of deformable objects can be based on 
ML alone, especially in safety-critical applications that 
require predictability and explainability of robot per-
formance. 

Several methods exist in the literature for modelling 
the behavior of deformable objects36. Examples in-
clude mass-spring systems, position-based dynami-
cs, and continuum mechanics. All have been applied 
with varying success at the experimental to cases in-
cluding food, tissues, fabric, paper, and each has its 
own limitations. These methods have also been used 
to create physics-based simulators such as SOFA, 
PhysX, MuJoCo, that provide development environ-
ments for state estimation and motion planning in ma-
nipulation tasks involving deformable object, and that 
in turn allow planning and control approaches for de-
formable objects. Future research will need to evol-
ve these methods and define the best mix of techni-
ques to tackle specific manipulation problems – be 
it folding a shirt, in-hand manipulation of sponge-like 
objects, or tying a rope. 

Model-based control of soft robots. The other 
challenge is the development of analytical models of 
robots that are themselves soft. The development of 
control algorithms in soft robotics has followed a re-

gineered, or social system (or system-of-systems), is 
dynamically updated with data from its physical twin, 
has a predictive capability, and informs decisions 
that realize value”34. Digital twins of large natural and 
man-made environments, including factories, can be 
developed to enable robot programming at a more 
abstract level and facilitate the realization of robotics 
tasks of much larger complexity.

Semantic digital twins will substantially advance ro-
botic capabilities by embedding rich, structured 
knowledge into digital representations of physical en-
vironments. These twins integrate detailed 3D models 
with semantic annotations, enabling robots to access 
context-specific information about objects, their pro-
perties, and relationships. For example, a robot can 
query a semantic digital twin to determine the precise 
6D pose of a handle or understand the articulation 
model of a cupboard door, allowing it to create mo-
tion planning and control problems automatically. By 
serving as virtual knowledge bases, semantic digital 
twins not only provide data but also compute truth 
values of relationships dynamically, transforming how 
robots plan and execute tasks.

Ongoing research in generative AI is addressing the 
automated construction of semantic digital twins. 
This advancement has the potential to bridge the gap 
between data-driven and model-based approaches, 
enhancing robots’ ability to create accurate digital re-
presentations of environments autonomously. As this 
technology matures, it will further enrich semantic di-
gital twins, enabling robots to operate with greater 
precision, adaptability, and context-awareness across 
diverse applications.
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versed path compared to most domains in computa-
tion and robotics. For soft robots, learning-based ap-
proaches have been applied37 38 before model-based 
ones, which were viewed as too challenging, or sim-
ply not applicable because of the virtually infinite de-
grees of freedom of a soft robotic system interacting 
with unpredictable environments. More recently thou-
gh, researchers have found more and more effective 
ways to approximate soft robotics dynamics, paving 
the way for new modelling approaches39. In some 
cases, even simplified models have been shown to 
improve the performance with respect to model-free 
approaches38 40. For example, many soft robots have 
one dimension longer than the other two, and their 
whole configuration can be simulated by only con-
sidering deformations along that axis, vastly simpli-
fying the problem. When that is not possible, new 
mathematical approaches – such as finite-dimensio-
nal modelling techniques that use partial differential 
equations to simulate infinite-dimensional systems 
– have been developed, that combine computatio-
nal tractability with enough precision to describe the 
behavior of soft robots. By translating the volume of 
the robot into a mesh, that is a set of nodes and the 
information on their neighbors, 
it becomes possible to approxi-
mate the entire volume of the 
soft system using interpolation. 
The choice of the modelling 
technique determines the best 
control strategy to be used for 
the robot, which may focus 
on curvature, strain, or volume 
control, and that may or may 
not combine actuation and un-
der-actuation. Research in the 
next decade needs to focus on 
further developing and testing 
modelling techniques and mo-
del-based planning/control for 
soft robots, including soft aerial 
robots, as well as understan-
ding how they can be optimally 
combined with data-driven and 
learning-based techniques41. 

New mathematical approaches to control and 
planning. For both soft and rigid robots, a promising 
avenue of research is to look beyond the traditional 
approach to robot motion generation - that is to first 
plan trajectories on a kinematic level and then deve-
lop controllers for tracking the planned trajectories - 
taking the robot hardware as a priori. The study of 
intrinsic robot dynamics can translate into methodo-
logies to generate highly efficient motions. New so-
lutions are available to extend the methodical basis 
for modeling and controlling them, such as geometric 
mechanics and dynamics, differential geometry, and 
algebraic topology, that can mathematically describe 
the nonlinear oscillations that a robotic system may 
have. There are many examples of robotic motions, 
such as galloping or bouncing, that could be realized 
by exploiting intrinsic oscillation modes rather than 
being enforced on the system, in other words desi-
gning the robot so that it favours the desired set of 
movements42. 

For the next generation of mobile robots, fundamen-
tal research at the intersection with physics will be 
needed on how to effectively model the interaction 

Figure 2. An open challenge is how to control multi-robot systems where several robots of 
different types co-operate on tasks and share representations of the environment. that they may 
observe from varying points of view and with different sensors. 
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of robots with their environment, and especially the 
complex case of interaction with fluids such as air, 
water, viscous substances). For example, in flying ro-
botics, complex aerodynamic modelling will be nee-
ded to predict the unsteady lift and trust generated by 
a fixed-winged robotic bird because of the interaction 
with vortex formation around the wing, and particu-
larly a flapping wing43 44. Similar cases can be made 
for marine robotics, or for robots that have to move 
in viscous fluids such as oil or mud, or dig into sand 
and soil, to act autonomously in complex and extreme 
environments without human supervision. 

Long-horizon planning. Long-horizon planning – 
the ability to consider action consequences over a 
long temporal period when moving towards a sym-
bolically specified goal, a mission rather than merely 
a target position - is a necessary requisite for autono-
mous behavior in robots, but as of today it is still an 
open challenge because of computational cost and of 

the intrinsic difficulty in planning beyond a few short-
term steps in realistic application settings45. Work is 
ongoing on new theoretical approaches to long-ho-
rizon planning – such as incorporating abstract 
strategies in task-planning routines and evaluating 
their affordance – that allow to practically accelera-
te long-horizon planning, with the goal of making it a 
tractable problem in realistic use cases. 

Another significant open challenge will be fast motion 
planning under uncertainty, that requires computatio-
nal approaches that incorporate from the beginning 
the uncertainty of the environment in motion planning 
algorithms46. Here the Finite Element Method (FEM) is 
proving useful in generating high-quality motion plans 
for use cases involving deformable objects, such as 
guiding steerable needles through deformable tissue 
for minimally invasive biopsies and drug-delivery, and 
manipulating planar tissues to align interior points at 
desired coordinates for precision treatment.

Figure 3. A cognitive robot tasked with preparing a bowl of cereal for breakfast would face challenges with implicit knowledge that allows humans to do the 
same task without explicit planning. It would need to know that “a bowl of cereal” implies the use of milk, or what container can be used as the bowl or whe-
re to find the cereal. Without common-sense knowledge that provides answers to these challenges, the robot may search the whole kitchen for milk instead 
of starting with the most probable location (the fridge) or it would not understand that a found container could be used as the bowl (adapted from reference 
49).
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Multimodal, multi robot and shared control. 
For legged robots a key open challenge is planning 
and control of multimodal locomotion, that allows the 
robot to switch between walking, climbing, jumping, 
and squeezing through narrow passages. Fundamen-
tal interdisciplinary research will be needed to under-
stand and model how living organisms achieve ef-
fective multimodal locomotion, and this bioinspiration 
will be key to understand how to integrate open-loop 
and closed-loop control, active and passive control, 
model-based and learning-based strategies to achie-
ve multimodal mobile robots47. 

Significant improvements are needed on control of 
multi-robot systems where several robots of different 
types co-operate on tasks, including control of robo-
tics swarms with several tens, or even hundreds, of 
individuals: here, progress will be required on crea-
ting shared representations of the environment that 
different robots may observe from varying points of 
view and with different sensors (see Figure 2) as well 
as on common operative systems and communication 
protocol that go beyond current standards48. 

Shared control between humans and autonomous 
agents will be another important area of research. 
Many future application scenarios will require robots 
combining an autonomous agent, which controls 
part of the robot and a human controlling the rest. 
For example, think of an assistive device made of a 
wheelchair equipped with a robotic arm. The wheel-
chair would have 3 degrees of freedom and the arm 
may have 8 additional ones, but the human should 
not be in charge of controlling all 11 DoFs. She or he 
may be required to act on the main ones, indicating 
a direction or a desired action, and then the control 
system would need to take over and stabilize all other 
degrees of freedom. 

Semantic reasoning for robots. Autonomous 
behaviour requires robots to have reasoning abilities 
to interpret their environment and cope with new and 
underdetermined tasks, new environments or new 
objects. Achieving this goal implies equipping robots 
with commonsense knowledge including physics, 
causality, objects with their locations, properties and 

relationships, the psychology of human beings - a 
so-called computational Theory of Mind49. 

The ultimate challenge is robots jointly accomplishing 
tasks for, and together with humans, as it is needed 
for robots that are co-workers of humans and robots 
that empower people to improve their quality of life. 
For this, robots require advanced reasoning capa-
bilities that enable seamless collaboration in shared 
tasks. These capabilities include negotiating roles in 
joint activities, dynamically allocating subtasks, and 
adapting to human feedback to ensure alignment 
with shared goals. Robots must maintain a robust un-
derstanding of the context of the task, which involves 
reasoning about human intentions, the current state 
of the environment, and their own operational con-
straints. By integrating task planning with real-time 
feedback, robots can effectively co-construct actions 
with humans, ensuring mutual understanding and ef-
ficiency50.

In addition to negotiation, robots must be capable of 
both giving and receiving help during task execution. 
This involves reasoning about when humans might re-
quire assistance, proactively offering help, and coor-
dinating their actions without disrupting human effor-
ts. Equally important is the ability to ask for help when 
needed, which requires self-awareness of their own 
limitations and the ability to articulate specific needs 
clearly. Robots must dynamically switch between au-
tonomous operation and guided intervention, levera-
ging human input to overcome gaps in knowledge or 
capability. These interactions rely on the robot’s ability 
to simulate potential actions, predict outcomes, and 
adjust its behavior to ensure that joint tasks proceed 
smoothly and efficiently.

Underlying these reasoning capabilities is the need for 
robust knowledge representation and decision-ma-
king frameworks (Figure 3). Robots must represent 
objects, events, and51 relationships in structured for-
mats that support real-time reasoning, enabling them 
to model their capabilities and limitations accurately. 
Incorporating probabilistic reasoning allows robots to 
operate under uncertainty, adapt to changes in the 
environment, and learn from both successes and fai-
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5. CLOSING WORDS
Control, planning, and reasoning have provided 
the foundations of robotics, and will remain central 
also in the age of deep learning and generative AI, 
shaping the future of intelligent robots. Intelligence 
ultimately involves maintaining representations and 
reasoning about them, and explicit models enable 
rigorous computational frameworks. The significan-
ce of such approaches lies in their ability to bypass 
data dependency and provide results that are 
correct, transferable, generalizable, and optimal. This 
ensures safety, trustworthiness, and reliability—qua-
lities indispensable for robots operating in dynamic, 
human-centric environments.

lures. By combining intuitive physics and common-
sense reasoning with task-specific knowledge, robots 
can anticipate human needs, avoid undesired outco-
mes, and continuously improve their performance in 
joint activities.
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The past decades have seen an increasing number of robots deployed in 
the vicinity of humans, from vacuum cleaners roaming in our living rooms, 
drones flying over our heads, to prostheses attached to our bodies. To 
increase trust and reduce risks, it is urgent and necessary that robots 
become cognizant of their environment and socially aware. They must 
be able to interpret, predict and reason about both human behavior and 
their own behavior.  

This article aims to summarize existing solutions and open challenges 
over the next two decades towards the development of robotic applica-
tions capable of interacting with humans in a pertinent and helpful man-
ner in any environment. Such applications can help tackle societal chal-
lenges, from assisting an aging population to monitoring the environment 
in order to mitigate and adapt to the effects of climate change and mana-
ging the impacts of natural hazards, such as earthquakes and floods. The 
article reviews successful examples of robots interacting and supporting 
humans, and delineates which breakthroughs, both in modeling and te-
chnology, have allowed such applications. It then highlights the low-han-
ging fruits, technologies that could improve the quality, effectiveness and 
versatility of the interaction and collaboration between humans and ro-
bots in the short- and medium- term that do not require scientific brea-
kthroughs but rather clever strategies of technology transfer. It ends with 
a discussion of long-term scientific challenges that will require novel and 
interdisciplinary efforts to fulfill the vision of human-centered robotics.
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1. INTRODUCTION
Today, all efforts globally are turned toward designing 
the next generation of robots, that of robots that will 
be employed and function in close or direct inte-
ractions with lay users. We are no longer in the realm 
of factory robots used by well-trained practitioners. 
We seek the design of autonomous wheelchairs, 
smarter and more dexterous prostheses and new 
drones and personal mobility devices that can navi-
gate autonomously and safely to our doorsteps and 
on pedestrian lanes. It is not conceivable that these 
robots be programmed without a deep understanding 
of the social, ethical, cultural rules that underpin hu-
man environments.

Developing robots that are cognizant of the world that 
surrounds them has led to a wide range of efforts wor-
ldwide, all of which fall under the general field of hu-
man-robot interaction (HRI). The scope of HRI spans 
from developing algorithms and interfaces to facilitate 
seamless interaction between humans and robots, to 
conducting observations and experimental evaluations 
of how stakeholders utilize robots in various contexts. It 
encompasses both non-physical interaction—such as 
verbal and gesture-based communication—and physi-
cal interaction—where robots and humans are either 
in contact, as in prostheses, or in indirect contact, as 
when they jointly carry an object.

Originally an offspring of Human-Computer Inte-
raction, HRI became a research field of its own in the 
mid-1990s, gaining increasingly more attention over 
the following three decades. It established itself with 
the launch of the IEEE-ACM International Conference 
on HRI in 2005 and subsequently of a few dedicated 
journals. HRI is fundamentally an interdisciplinary field 
of research, and requires close collaboration between 
roboticists and social scientists, cognitive scientists, 
psychologists, economists and philosophers. Their 
expertise is crucial to model human behavior and de-
velop robots capable of interpreting and predicting 
the actions of the humans they interact with. It is also 
crucial to make sure that robots behave and speak in 
ways that are socially adequate and effective when 
communicating and collaborating with humans.

2. INTERACTION TYPES, 
SENSORS, AND INTERFACES 
FOR HRI
Human-robot interaction can be either haptic/physi-
cal–when humans and robots get into actual contact 
with each other–or non-physical. Physical human-ro-
bot interaction is being used extensively for teleope-
ration or for teaching robots to perform tasks through 
what is known as programming by demonstration or 
learning from demonstration. Moreover, modern col-
laborative robots (cobots) are designed to work to-
gether with humans, for example as a “third hand”1 or 
for jointly manipulating large and heavy objects2.

Non-physical interaction can be both verbal, when 
humans instruct robots what to do, and non-verbal, 
for instance by using robot’s eye gaze3 to augment 
verbal communication, convey the robot’s internal 
state, or gather the attention of the human, possibly 
directing it toward an object involved in a joint task. 
This builds on the unique human ability, surpassing 
that of non-human primates, to infer others’ intentions 
from eye gaze. Physical and non-physical HRI can be 
combined in the most complex systems and tasks4.

Over the last three decades, the type and complexity 
of both physical and non-physical HRI have evolved 
significantly due to several factors. First the intro-
duction of new materials and new sensors, such as 
artificial skins and haptic interfaces, has enhanced 
robot’s ability to detect and interpret physical con-
tacts with humans. Second, the design of more re-
alistic human-like bodies, such as androids and hu-
man-like avatars, has enabled HRI to mimic certain 
aspects of human-human interaction. Finally, recent 
advancements in speech recognition and Large Lan-
guage Models (LLMs) have greatly improved verbal 
interactions with robots, enabling more complex dia-
logues.

Physical HRI. In physical human-robot interaction, 
the key achievement that allowed the transition from 
the classical rigid, fixed-base robots to those capable 
of safely interacting with humans is compliant control5, 
that is the possibility to regulate the energy injected in 
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the systems thereby managing the interaction beha-
vior rather than following predefined trajectories. This 
is especially relevant to guarantee safety of the hu-
man operator when interacting with a robot.

Compliance can be passive–or mechanical–when 
the mechanical properties of an actuator or another 
robotic part are tuned to determine what stiffness or 
damping it can adopt, thereby adapting to the for-
ce applied by a human. The introduction of soft and 
elastic materials on robot bodies, which prevents 
harm to humans in case of impact, can be seen as 
an example of better passive compliance. Active–or 
cognitive–compliance, on the other hand, implies the 
use of algorithms to actively model how the stiffness 
or the damping must change as an effect of task re-
quirements6.

Advancements in sensors, both for forces and tor-
ques, as well as the availability of tactile signals col-
lected by artificial skin7 played a crucial role in achie-
ving cognitive compliance of robotic systems and 
making physical human-robot interaction safer. As 

a result, compliant control has allowed humans to 
control the robot movements with touch, for instance 
through haptic interfaces. It has increased precision 
and performance in tasks execution, as well as safety. 
Among the compliance control strategies, of particu-
lar importance was the development of variable impe-
dance actuators8, which was based on the intuition of 
bringing intelligence into the robot hardware.

Recent research in robotics has also addressed so-
cial compliance, that relates to the capacity of a sy-
stem to conform to social norms and expectations. In 
particular, many works have studied how monitoring 
physiological signals related to social compliance 
could allow robots to change their actions, for in-
stance stopping a task and waiting until those signals 
indicate that the human has regained some of the re-
quired trust before resuming the joint work9.

Non-Physical HRI. In non-physical human-robot 
interaction, better computer vision algorithms have 
contributed significantly to improved navigation in va-
rious environments, to detect humans, to predict their 

Fig. 1. Different types of human-robot interaction
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intentions and behave appropriately. Simultaneous 
localization and mapping (SLAM) is now a mature te-
chnology deployed in a wide variety of mobile robots, 
such as drones and vacuum cleaners. It can detect 
human as well as non-human obstacles. Computer 
vision has also helped robots to improve their capa-
bilities in manipulation tasks that involve interactions 
with humans10.

Breakthroughs in speech recognition, thanks to re-
current neural networks and transformers, fueled the 
diffusion of voice assistants, such as Amazon’s Alexa, 
Google Assistant and Apple’s Siri. The latest deve-
lopments in LLMs have boosted verbal human-robot 
interaction, allowing robots to conduct complex dia-
logues with humans. However, there is still a stark 
contrast between the advanced conversational abi-
lities of LLMs and the still limited capacity of robots 
to interact with the physical world. A language model 
may allow a robot to engage with humans in a com-
plex conversation on how to set up a dinner table for 
friends versus hosting a boss, but if the human were 
to ask the robot to fetch a glass from the table, the 
robot may not be able to identify the correct glass, or 
may prove much more clumsier and may knock over 
other objects along the way.

3. COMMERCIAL APPLICATIONS 
OF HRI
All together, these three decades of research have 
led to the development of robots designed and pro-
grammed to be intrinsically safe for humans—that is, 
capable of working safely near them without being 
cognitively aware of their presence. Several applica-
tions have emerged from this achievement.

Cobots started operating in the manufacturing indu-
stry outside of confined spaces11. The first industrial 
cobot to reach the market was the LBR iiwa single arm 
system, developed by the German Aerospace Cen-
ter (DLR) and commercialized by KUKA in 200812. It 
enabled force and torque sensing in all joints. Other 
single- or dual- arms systems became available in 
the following years, such as the UR5 by Universal 
Robots, Robonaut by NASA, that started operating 
on the International Space Station, and Baxter by 

Rethink Robotics, later evolved in a single-arm ver-
sion called Sawyer. Even if both Baxter and Sawyer 
had an affordable pricing, they had mixed success. 
This was maybe due to the adoption of spring actua-
tors coupled with force sensors, which make them 
safer than cobots that relied on more traditional po-
sitioning systems, like those designed by Universal 
Robots, but less precise13. The cobot industry in the 
end got dominated by Universal Robots single-arm 
systems. Competitors are emerging in Europe, such 
as Europe Technologies and Agile Robots.

Robots that navigate and share space safely with hu-
mans have been deployed satisfactorily in many envi-
ronments. Autonomous vehicles have been deployed 
in factories and warehouses, as in the case of Carter 
developed by Robust.AI14, but their interaction with 
human workers is still carefully structured. Domestic 
robots performing household tasks, such as vacuum 
cleaners, are produced by the million each year. Mo-
bile robots work quite well in public spaces such as 
hospitals and airports. Robots have also been de-
ployed in restaurants to serve people, where they can 
navigate without ground signaling, finding their way 
among customers and servers.

A significant leap forward in terms of robots that phy-
sically interact with humans has been the develop-
ment of wearable robotics, especially exoskeletons. 
Thanks to the development of lighter and more robust 
materials, such as titan, exoskeletons are now com-
mercially deployed, not only to help physically impai-
red people but also to assist humans in heavy duties, 
reducing the social cost of work15.

One step beyond there are those robots that, thanks 
to the very anthropomorphic or biomorphic design of 
their body and of the controller, can interact with hu-
mans and be human-aware cognitively. For example, 
they can talk and respond to humans, simulate facial 
expressions and recognize human’s expression, pre-
dict human motion and adapt to it. Robots for rehabi-
litation and companionship have been deployed and 
their effectiveness has been demonstrated to a cer-
tain extent. One of the most successful examples is 
PARO, the baby seal robot, whose deployment has 
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been proved useful in hospitals and elderly homes, 
especially with people affected by dementia16. Other 
examples in this category are CLEO and AIBO, a ro-
bot cat and dog respectively which are used mainly 
with children with well-documented benefits. ROBO-
TA, an imitating doll robot and Keepon, a small friendly 
ball-like robot, were both successfully used to engage 
with children in autism research. Social robots have 
been developed also with highly realistic human faces, 
such as Geminoid by Hiroshi Ishiguro Laboratories 
and Sophia by Hanson robotics. Robots capable of 
interacting with humans have also been developed for 
educational purposes. An example is the Sphero robot, 
employed in programming classes for children.

As for the more theoretical work on human-robot inte-
raction, that is the study of how humans interact with 
robots and of certain aspects of human behavior whi-
ch employ robotic platforms, the most robust findings 
concern how people interact with robots in controlled 
laboratory settings, one-to-one interaction with hu-
mans trained to interact with the robot. One of the 
pioneering works in this field of research is Kismet17, 
the robotic platform developed at MIT in the late 90s. 
Kismet is a social robot designed to engage in natural 
and expressive face-to-face interaction with a human. 
It was inspired by infant social development, beha-

4. SHORT-TERM CHALLENGES 
AND LOW-HANGING FRUITS
HRI is crucial to scaling up the use and deployment 
of collaborative robots, that is robots capable of ope-
rating outside the confined environments of industrial 
settings—where they traditionally worked in cages 
or behind fences to prevent any interaction with hu-

vior and psychology. The human and the robot are led 
to interact like in a parent-infant relationship. Around 
2010, several new robotic platforms for social hu-
man-robot interaction emerged, such as NAO, iCub, 
Kaspar and Pepper. NAO has been among the most 
widely used social robots in human-robot interaction 
research due to its affordability and broad functiona-
lity. It has been used in various applications, such as 
education, autism therapy and elderly care18.

In the last three decades, research on human-robot 
interaction has achieved important results, bringing 
robots to interact with humans in different contexts. 
However, the goal of developing fully autonomous 
robots capable of interacting usefully and pertinent-
ly with humans is still quite far away. Next, we offer 
our view on the most pressing challenges which HRI 
must resolve, and the most rapid new deployments of 
HRI we can expect.

Fig 2. Robots interacting and collaborating with humans. A: Collaborative human-robot sawing experiment performed at Italian Institute of Technology in 
2016 (Credit: Luka Peternel, CC BY-SA 4.0). B: A journalist speaking to humanoid robot Sophia at the Deutsche Welle Global Media Forum in 2019 
(Credit: Deutsche Welle, CC BY-NC 2.0). C: Pepper robot interacting with a waiter in a Tokyo cafe, 2019 (Credit: International Labour Organization/K. 
Hongladarom, CC BY-NC-ND 2.0). D: PARO therapeutic seal robot interacting with an elderly woman in a nursing home in 2012 (Credit Amber Case, CC 
BY-NC 2.0). E: AIBO ERS-7 following pink ball held by child (Credit: Stuart Caie, CC BY 2.0). F: Child interacting with Robota during a behavioral study 
conducted in 2007 (reproduced with permission from19).
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mans. It is also needed to expand usage of robots 
in the medical sector, wearable robots and exoske-
letons, robots and drones for the inspection of remo-
te locations and for search and rescue operations in 
collaboration with humans, mobile robots capable of 
navigating in crowded spaces, such as hospitals, air-
ports, restaurants, and robots for social companion-
ship. Ultimately, the most challenging application is 
inside homes, which are among the most unstructu-
red and unpredictable environments.

Even if the market for collaborative robots in the indu-
stry has been growing dramatically in the last ten ye-
ars, they still represent only 5 to 8% of the robots sold 
to industries. Their presence in manufacturing and lo-
gistics could increase soon as they become safer to 
interact with, more robust and capable of performing 
highly dynamic motions similar to what humans do20.

The physical interaction with robots could be enhan-
ced by providing the robot with tactile sensors that 
can measure more accurately the contact forces21. 
The idea of an artificial skin has been proposed a long 
time ago, but so far it has been implemented mainly in 
robotic platforms for research. One of the first exam-
ples was the iCub robot developed at the Italian In-
stitute of Technology that already ten years ago was 
covered with 200 tactile sensors, one the largest im-
plementations of tactile skin at the time. More recent-
ly, researchers at TU-Munich implemented22 tactile 
skin based on off-the-shelf components integrated 
on hexagon shaped printed circuit boards, with which 
they covered a full-size humanoid robot (H1). One of 
the key elements was to reduce the computation in a 
way that allowed the humanoid robot to operate auto-
nomously without needing additional computation or 
external energy source. Deploying robots with tactile 

Figure 1: Short-term and long-term research goals on human-robot interaction
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sensing small covering surfaces is achievable in the 
short term and could be driven also by the need to 
improve the manipulation performance of robots em-
ployed in the agrifood and textile industries.

Research on online estimation of ergonomics has 
been extremely active and industrial applications 
could be achieved soon, facilitated by the fact that 
the technology works independently of the context. 
Recently there have been several attempts to offer so-
lutions based on wearable inertial sensors and pres-
sure or force sensors rather than systems based on 
optical motion capture, which can be easily occluded 
in cluttered environments such as factories23 24. Also, 
researchers have been working on improving the in-
tuitiveness of ergonomic evaluation and visualization 
tools based on digital human models to facilitate their 
adoption by industrial operators25. These technolo-
gies could be employed in devices that alert workers 
performing heavy tasks about damaging postures to 
prevent musculoskeletal disorders and enhance sa-
fety in the workplace.

Significant progress on socially-aware navigation is 
now within reach for the research community, espe-
cially in Europe26. In the next few years, there could 
be robots capable of navigating among humans, not 
only maintaining appropriate distance from humans, 
but also understanding how humans move when they 
are confused. Deploying this kind of robots will requi-
re refinement of the algorithms that allow the robots 
to detect and perceive humans, and also predict what 
will happen in the next second. This would help find 
a trade-off between safety and usefulness of robots 
navigating among humans. Socially-aware navigation 
would also greatly benefit from a better understanding 
of the interaction between naive users and robots in 
unstructured settings. As an example, last-mile deli-
very robots need to share the sidewalk with humans, 
and more work is needed to model humans’ expecta-
tions regarding the behavior of these robots27.

Gesture-based interaction is quite mature now, as 
there are many algorithms that work well in laboratory 
conditions. More research is needed to make them 
work in the real-world environment, where humans do 

not act perfectly and there could be occlusions and 
disturbances, but the science is now solid.

Vocal and audio recognition is mature too, with several 
well-performing libraries. Deploying it could be slight-
ly more challenging than gesture recognition because 
of the great variance with which people speak, and of 
course each application can have a different vocabu-
lary. To address real-world acoustic conditions, the 
signal processing community offers numerous libra-
ries capable of denoising audio signals. For instance, 
these libraries can effectively extract speech from a 
drone’s onboard microphone despite high levels of 
ambient noise.

The integration of LLMs and robotic systems holds 
promise to transform the human-robot interaction 
paradigm, allowing robots to act upon high-level in-
structions expressed in natural language and gene-
rate plans in the form of step-by-step procedures or 
code. This field of research is just starting but it is 
rapidly evolving, with several examples of this inte-
gration already available28. These include the models 
developed by Google DeepMind29 or LaMi by the 
Honda Research Institute Europe30. LaMi converts 
various forms of human input, such as behavior, po-
sition, gaze, dialogue, and scene information, into a 
language that the LLM can process. The LLM then 
analyzes the situation and determines how and when 
the robot should assist humans, following predefined 
guidelines. Additionally, it synchronizes the robot’s 
movements (lid, neck, ears) with speech output to 
create dynamic, multi-modal expressions.

As for the more theoretical work on human-robot in-
teraction, researchers will need to understand much 
more about the interaction of robots with multiple 
users. This last setting can be used to study how di-
scrimination and social exclusion31 arise and how bia-
ses in various robot components can affect the group 
members depending on their features32. Examples of 
these so-called “embodied biases” are natural lan-
guage understanding models and voice recognition 
models that are known to be better at recognizing 
male voices than female ones, or image recognition 
models which are better with white people than with 
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people of color. This is largely due to the underrepre-
sentation of females and people of color in the data-
sets used to train these models. All these elements 
will be embedded in robotic platforms and biases can 
arise in multiple ways33.

There is also research about the possibility to mitigate 
some of these risks, making robots aware of discrimi-
nation but also that other humans can discriminate. 
Besides making robots aware of this risk, one could 
program them to apologize when they are discrimina-
ting or if they are at risk of discriminating, explaining 
why they are doing so to start some process to rein-
tegrate a person in the group.

5. OPEN SCIENTIFIC 
CHALLENGES
The long-term goal of human-robot interaction rese-
arch is to design robot systems and AI systems which 
explicitly consider the human in terms of their actions, 
their preferences, their mental state and their goals 
and therefore understand when they need to act or 
communicate. All these questions are far from being 
solved today.

One open challenge is modeling basic cognitive 
aspects of humans, to endow robots with a theory 
of mind that allows them to understand the human’s 
expectations during a joint task and to engage in a 
negotiation which leads to results that align with the 
human’s preferences, objectives and values34.

Robots should also be able to update these models 
with time. As an example, they should understand 
when a human is not feeling well and performing with 
less dexterity and pitch in to help, but they should 
take themselves back as soon as the human recovers. 
They should be able to do this in open environments 
where new people may come into play and take roles 
in the joint actions.

To achieve human-centered robotics, researchers 
should strive to develop robots that are easy to in-
teract and work with and do not overly constrain hu-
mans. In logistics, where robots are already deployed, 

this kind of problem has already arisen, leading to a 
high degree of turnover among human workers. The-
se workers often feel replaceable as they work to 
complement robots. The development of future co-
bots should be centered around human workers to 
ensure they do not refrain from intervening with ro-
bots out of fear of the consequences this could have 
on their jobs. The robots of the future should be able 
to adapt and give priority to the human, allow them 
the freedom to make their own decisions, and assist 
rather than impose their rhythm. It is thus crucial to 
involve experts from fields such as psychology, eco-
nomics, philosophy, and cognitive science to under-
stand thoroughly what it means to collaborate with 
humans35. European institutions should weigh in with 
meaningful regulations to enforce the principle of hu-
man-centered robotics, as they have already done 
concerning the use and exploitation of personal data 
and the deployment of AI systems. Moreover, robots 
should be well integrated with existing infrastructures, 
also digital ones.

To fulfill this long-term vision several more specific 
challenges should be addressed.

In physical human-robot interaction, a challenge will 
be that of designing systems that allow to change the 
level of autonomy and shared control. This could hap-
pen automatically or by request, so that it fits exactly 
what the human wants and needs in terms of ergo-
nomics, but especially what the human feels comfor-
table with. This would allow the human to preserve 
its own sense of agency and not feel completely do-
minated by the robot. Solving this challenge will be 
crucial for exoskeletons, especially active ones, which 
will be more and more deployed in assisting humans 
in various tasks, such as lifting heavy payloads, and 
for manipulators on a mobile base in a factory.

Tactile human-robot interaction would be enhanced 
by developing human-like tactile skin for robots. One 
of the necessary steps in this direction is to build 
electronics and algorithms capable of locally proces-
sing the vast amount of sensing data collected over 
large surfaces. This would reduce the quantity of 
data processed by the central processing unit, which 
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should only handle high-level decisions about per-
ception.

Currently, AI and machine learning algorithms in ro-
botic sensing are implemented using digital electroni-
cs. A new computing paradigm inspired by the human 
brain, which is based on analog signals, is required. 
This could be achieved by developing neuromorphic 
devices—hardware that implements neuromorphic 
arrangements and is capable of learning, similar to 
how synapses between neurons create plasticity in 
the brain. An example is printed synaptic transistors 
placed close to the sensor that can learn36.

Other problems that need to be solved to have hu-
manoid robots performing a wide variety of tasks in 
collaboration with humans concern the ability to le-
arn in a continuous way, and the ability to persona-
lize behavior to different people. Also, such robots 
need to be soft enough. A major development step 
is required also on all levels of hardware and control 
to enable close physical interaction, for tasks like fe-
eding or undressing, washing and dressing again a 
person, currently performed by caregivers. Humanoid 
robots can play multiple roles because they fit in the 
environments we have built for us humans, both in 
terms of shape and size. Moreover, getting assistan-
ce from a humanoid robot is more effective because 
humans know how to behave in such situations, e.g. 
they know they can put a hand on the shoulder or how 
to walk together.

As the interaction between robots and humans be-
comes more unconstrained, more interdisciplinary 
research is needed, especially on managing humans’ 
expectations of the robots’ capabilities.

To investigate the social aspects of human-robot in-
teraction, cheaper, more robust, and more flexible ro-
botic platforms are needed. Currently, the choice is 
between robot toys, which are very robust and very 
cheap but with a very specific application area whi-
ch cannot be changed easily, and research platforms, 
such as Pepper and NAO, which are instead quite 
expensive. In between there are platforms developed 
by computer scientists and engineers that are often 

too complex to customize. As a result, the choice of 
the platform is rather restricted. Today, a long-term 
study on social robots requires major investments. 
Real-world data on long term interaction between 
robots and humans is not yet available, since com-
panies like Jibo or Blue Frog Robotics that aimed to 
develop robot companions did not take off37. Their 
products didn’t make the step into people’s homes 
as expected.

AI and machine learning techniques, especially deep 
learning and LLMs will play an important role in de-
veloping the robots of the future. The integration of 
LLMs into robotic systems could enable individuals, 
irrespective of their technical knowledge, to interact 
with robots and direct their actions. An essential step 
forward compared to LLMs today will be the capabili-
ty to generate safe and reliable actions in the physical 
world, based on a physical architecture which is fully 
aware of the robot’s internal state and capabilities. 
This would require at the same time to build versati-
le robots, which are capable of doing many different 
things, navigate, pick objects, interact safely with the 
environment, avoid obstacles, etc. It is a huge endea-
vor, but it will change the way in which humans inte-
ract with robots.

The use of LLMs could prove highly effective in social 
science research. For example, studies on the impact 
of language tone in communication, both betwe-
en humans and between robots and humans, are 
challenging to perform by asking humans to change 
their tone, whereas LLMs can do this very efficient-
ly. However, attention must be paid to reproducibi-
lity, especially in long-term studies. Given that LLMs 
evolve rapidly due to the availability of new training 
data, their consistency over the course of experimen-
ts or across experiments performed at different times 
should not be taken for granted.

However, as for other fields of robotics, the challenge 
in human-robot interaction lies in finding an intelligent 
way to combine model-based AI systems with deep 
learning algorithms, to mitigate potential risks such as 
misinterpretation. This requires defining in which si-
tuations misinterpretation can be accepted, because 

Chapter 3 - Human-Robot Interaction: Successes, Hurdles and Remaining Challenges

66

euROBIN Strategic Research Agenda

www.eurobin-project.eu



it poses no safety issues, and situations where we 
need instead that the machine really understands 
what happened, to assess it correctly. As of today, 
we cannot rely on LLMs for this, and we need to com-
plement them with conservative measures to avoid 
dangerous consequences.

Embodiment of LLMs will also require dealing with 
safety and trust, since people are going to be able 
to use and interact with the robots even without 
knowing how they work and what their limits are. The 
integration of ChatGPT into a robotic arm that col-
laborates with human workers on an assembly task 
has demonstrated that it significantly increased trust 
in human-robot collaboration38. This is an opportunity, 
but it also poses the risk of over-trusting, as it has 
been observed in autonomous cars where, even with 
the vehicle alerting them that its sensors are malfun-
ctioning and asking them to take over, people did not 
intervene, trusting that the car will recover. Strategies 
to recognize excessive trust and refusing to execute 
dangerous plans in such situations should be develo-
ped and deployed.

6. CLOSING WORDS
To fulfill the vision of robots interacting with humans 
in unstructured environments and collaborating with 
them to perform a wide variety of tasks, human-robot 
interaction research is becoming increasingly central 
to robotics. The first steps toward that vision were 
made over the last three decades, thanks to com-
pliant control, both mechanical and cognitive, new 
sensors for vision and touch, and progress in voice 
recognition and natural language processing, thay 
has enhanced the complexity of dialogues between 
humans and robots. As a result, cobots entered fac-
tories and started navigating public spaces, and se-
veral platforms are now employed in the treatment of 
neurodevelopmental disorders and neurodegenerati-
ve diseases, as well as for companionship. However, 
as of today interaction is still quite constrained and 
where it is more widespread, such as in logistics, hu-
mans often perceive robots as imposing their rhythm 
rather than adapting to human needs. To progress 
further towards human-centred robotics, it is crucial 
to conduct research on managing autonomy levels 
and understanding humans’ expectations and pre-
ferences. Additionally, advancing tactile sensing will 
be critical if robots are to help humanity to tackle the 
societal challenges it is facing, such as supporting an 
aging population and mitigating the impacts of clima-
te change. Finally, the integration of AI and machine 
learning into robotics promises to make robots more 
accessible to people without technical expertise. 
While this opens up new perspectives, it also entails 
risks that need to be addressed. Humans might over-
trust robots, underestimating potential hazards, or fall 
victim to embodied biases—discriminatory behaviors 
stemming from imbalanced training data used in AI 
systems.
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